FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Tuesday 09th April, 2024)

PHYSICS

SECTION-A

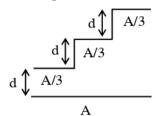
- 31. A proton, an electron and an alpha particle have the same energies. Their de-Broglie wavelengths will be compared as:
 - (1) $\lambda_e > \lambda_\alpha > \lambda_p$
- (2) $\lambda_{\alpha} < \lambda_{p} < \lambda_{e}$
- (3) $\lambda_p < \lambda_e < \lambda_\alpha$ (4) $\lambda_p > \lambda_e > \lambda_\alpha$
- 32. A particle moving in a straight line covers half the distance with speed 6 m/s. The other half is covered in two equal time intervals with speeds 9 m/s and 15 m/s respectively. The average speed of the particle during the motion is:
 - (1) 8.8 m/s
- (2) 10 m/s
- (3) 9.2 m/s
- (4) 8 m/s
- A plane EM wave is propagating along x direction. 33. It has a wavelength of 4 mm. If electric field is in y-direction with the maximum magnitude of 60 Vm⁻¹, the equation for magnetic field is:
 - (1) $B_z = 60 \sin \left[\frac{\pi}{2} (x 3 \times 10^8 t) \right] \hat{k}T$
 - (2) $B_z = 2 \times 10^{-7} \sin \left[\frac{\pi}{2} \times 10^3 \left(x 3 \times 10^8 t \right) \right] \hat{k}T$
 - (3) $B_x = 60 \sin \left[\frac{\pi}{2} (x 3 \times 10^8 t) \right] \hat{i} T$
 - (4) $B_z = 2 \times 10^{-7} \sin \left[\frac{\pi}{2} \left(x 3 \times 10^8 t \right) \right] \hat{k}T$

34. Given below are two statements:

> Statement (I): When an object is placed at the centre of curvature of a concave lens, image is formed at the centre of curvature of the lens on the other side.

TIME: 9:00 AM to 12:00 NOON

Statement (II): Concave lens always forms a virtual and erect image.


In the light of the above statements, choose the correct answer from the options given below:

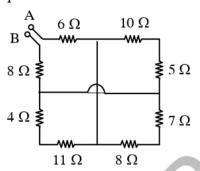
- (1) Statement I is false but Statement II is true.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is true but Statement II is false.
- (4) Both Statement I and Statement II are true.
- 35. A light emitting diode (LED) is fabricated using GaAs semiconducting material whose band gap is 1.42 eV. The wavelength of light emitted from the LED is:
 - (1) 650 nm
- (2) 1243 nm
- (3) 875 nm
- (4) 1400 nm
- 36. A sphere of relative density σ and diameter D has concentric cavity of diameter d. The ratio of $\frac{D}{d}$, if it just floats on water in a tank is:
 - $(1)\left(\frac{\sigma}{\sigma-1}\right)^{\frac{1}{3}}$
- $(2) \left(\frac{\sigma+1}{\sigma-1}\right)^{\frac{1}{3}}$

1

 $(3) \left(\frac{\sigma-1}{\sigma}\right)^{\frac{1}{3}} \qquad (4) \left(\frac{\sigma-2}{\sigma+2}\right)^{\frac{1}{3}}$

37. A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown in figure. If the area of each stair is $\frac{A}{3}$ and the height is d, the capacitance of the arrangement is:

- $(1)~\frac{11\epsilon_0 A}{18\,d}$
- (2) $\frac{13\varepsilon_0 A}{17d}$
- $(3)~\frac{11\epsilon_0 A}{20\,d}$
- $(4) \frac{18\varepsilon_0 A}{11d}$
- 38. A light unstretchable string passing over a smooth light pulley connects two blocks of masses m_1 and m_2 . If the acceleration of the system is $\frac{g}{8}$, then the ratio of the masses $\frac{m_2}{m_1}$ is:
 - (1) 9:7
- (2)4:3
- (3) 5:3
- (4) 8:1
- 39. The dimensional formula of latent heat is:
 - $(1) [M^0LT^{-2}]$
- $(2) [MLT^{-2}]$
- (3) $[M^0L^2T^{-2}]$
- (4) $[ML^2T^{-2}]$
- 40. The volume of an ideal gas ($\gamma = 1.5$) is changed adiabatically from 5 litres to 4 litres. The ratio of initial pressure to final pressure is:
 - (1) $\frac{4}{5}$
- (2) $\frac{16}{25}$
- (3) $\frac{8}{5\sqrt{5}}$
- $(4) \ \frac{2}{\sqrt{5}}$
- **41.** The energy equivalent of 1g of substance is:
 - (1) $11.2 \times 10^{24} \,\text{MeV}$
- $(2) 5.6 \times 10^{12} \,\mathrm{MeV}$
- (3) 5.6 eV
- $(4) 5.6 \times 10^{26} \text{ MeV}$


- 42. An astronaut takes a ball of mass m from earth to space. He throws the ball into a circular orbit about earth at an altitude of 318.5 km. From earth's surface to the orbit, the change in total mechanical energy of the ball is $x \frac{GM_em}{21R_e}$. The value of x is (take $R_e = 6370$ km):
 - (1) 11

- (2)9
- (3) 12

- (4) 10
- 43. Given below are two statements:
 - Statement (I): When currents vary with time, Newton's third law is valid only if momentum carried by the electromagnetic field is taken into account.
 - **Statement (II):** Ampere's circuital law does not depend on Biot-Savart's law.
 - In the light of the above statements, choose the **correct** answer from the options given below:
 - (1) Both Statement I and Statement II are false.
 - (2) Statement I is true but Statement II is false.
 - (3) Statement I is false but Statement II is true.
 - (4) Both Statement I and Statement II are true.
- 44. A particle of mass m moves on a straight line with its velocity increasing with distance according to the equation $v = \alpha \sqrt{x}$, where α is a constant. The total work done by all the forces applied on the particle during its displacement from x=0 to x=d, will be:
 - $(1) \; \frac{m}{2\alpha^2 d}$
- (2) $\frac{\text{md}}{2\alpha^2}$
- $(3) \ \frac{m\alpha^2 d}{2}$
- $(4) 2m\alpha^2 d$

- 45. A galvanometer has a coil of resistance 200Ω with a full scale deflection at $20 \mu A$. The value of resistance to be added to use it as an ammeter of range (0-20) mA is:
 - (1) 0.40Ω
- (2) 0.20Ω
- (3) 0.50Ω
- (4) 0.10Ω
- 46. A heavy iron bar, of weight W is having its one end on the ground and the other on the shoulder of a person. The bar makes an angle θ with the horizontal. The weight experienced by the person is:
 - (1) $\frac{{\bf W}}{2}$
- (2) W
- (3) W cos θ
- (4) W $\sin \theta$
- 47. One main scale division of a vernier caliper is equal to m units. If n^{th} division of main scale coincides with $(n + 1)^{th}$ division of vernier scale, the least count of the vernier caliper is:
 - $(1)\ \frac{n}{(n+1)}$
- $(2) \frac{m}{(n+1)}$
- (3) $\frac{1}{(n+1)}$
- $(4) \frac{m}{n(n+1)}$
- 48. A bulb and a capacitor are connected in series across an ac supply. A dielectric is then placed between the plates of the capacitor. The glow of the bulb:
 - (1) increases
- (2) remains same
- (3) becomes zero
- (4) decreases

49. The equivalent resistance between A and B is:

- (1) 18Ω
- (2) 25 Ω
- $(3) 27 \Omega$
- (4) 19 Ω
- 50. A sample of 1 mole gas at temperature T is adiabatically expanded to double its volume. If adiabatic constant for the gas is $\gamma = \frac{3}{2}$, then the work done by the gas in the process is:
 - (1) RT $2 \sqrt{2}$
- $(2) \frac{R}{T} \left[2 \sqrt{2} \right]$
- (3) $RT[2+\sqrt{2}]$
- $(4) \ \frac{\mathrm{T}}{\mathrm{R}} \Big[2 + \sqrt{2} \, \Big]$

SECTION-B

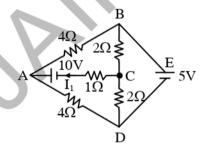
- 51. If \vec{a} and \vec{b} makes an angle $\cos^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a} + \vec{b}| = \sqrt{2} |\vec{a} \vec{b}|$ for $|\vec{a}| = n |\vec{b}|$ The integer value of n is _____.
 - 52. At the centre of a half ring of radius R = 10 cm and linear charge density $4n \text{ C m}^{-1}$, the potential is $x \pi V$. The value of x is _____.
- 53. A star has 100% helium composition. It starts to convert three ⁴He into one ¹²C via triple alpha process as ⁴He + ⁴He + ⁴He → ¹²C + Q. The mass of the star is 2.0 × 10³² kg and it generates energy at the rate of 5.808 × 10³⁰ W. The rate of converting these ⁴He to ¹²C is n × 10⁴² s⁻¹, where n is _____.
 [Take, mass of ⁴He = 4.0026 u, mass of ¹²C = 12 u]

54. In a Young's double slit experiment, the intensity at a point is $\left(\frac{1}{4}\right)^{th}$ of the maximum intensity, the minimum distance of the point from the central maximum is _____ μm .

(Given: $\lambda = 600 \text{ nm}$, d = 1.0 mm, D = 1.0 m)

55. A string is wrapped around the rim of a wheel of moment of inertia 0.40 kgm² and radius 10 cm. The wheel is free to rotate about its axis. Initially the wheel is at rest. The string is now pulled by a force of 40 N. The angular velocity of the wheel after 10 s is x rad/s, where x is _____.

56. A square loop of edge length 2 m carrying current of 2 A is placed with its edges parallel to the x-y axis. A magnetic field is passing through the x-y plane and expressed as $\vec{B} = B_0(1+4x)\hat{k}$, where $B_0 = 5$ T. The net magnetic force experienced by the loop is ______ N.


57. Two persons pull a wire towards themselves. Each person exerts a force of 200 N on the wire. Young's modulus of the material of wire is 1×10^{11} N m⁻². Original length of the wire is 2 m and the area of cross section is 2 cm². The wire will extend in length by _____ μ m.

58. When a coil is connected across a 20 V dc supply, it draws a current of 5 A. When it is connected across 20 V, 50 Hz ac supply, it draws a current of 4 A. The self inductance of the coil is ____ mH. (Take $\pi = 3$)

59. The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitudes of 4 m, 2 ms⁻¹ and 16 ms⁻² at a certain instant. The amplitude of the motion is \sqrt{x} m where x is ------

60. The current flowing through the 1 Ω resistor is $\frac{n}{10}$

A. The value of n is _____.

