FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Tuseday 09th April, 2024)

PHYSICS

SECTION-A

- **31.** A nucleus at rest disintegrates into two smaller nuclei with their masses in the ratio of 2:1. After disintegration they will move:
 - (1) In opposite directions with speed in the ratio of 1:2 respectively
 - (2) In opposite directions with speed in the ratio of 2:1 respectively
 - (3) In the same direction with same speed.
 - (4) In opposite directions with the same speed.
- 32. The following figure represents two biconvex lenses L_1 and L_2 having focal length 10 cm and 15 cm respectively. The distance between $L_1 \& L_2$ is:

- (1) 10 cm
- (2) 15 cm
- (3) 25 cm
- (4) 35 cm
- 33. The temperature of a gas is -78° C and the average translational kinetic energy of its molecules is K. The temperature at which the average translational kinetic energy of the molecules of the same gas becomes 2K is:
 - $(1) -39^{\circ}C$
- (2) 117° C
- (3) 127°C
- $(4) 78^{\circ} C$

- **34.** A hydrogen atom in ground state is given an energy of 10.2 eV. How many spectral lines will be emitted due to transition of electrons?
 - (1)6

(2) 3

TIME: 3:00 PM to 6:00 PM

- (3) 10
- (4) 1
- 35. The magnetic field in a plane electromagnetic wave is $B_y = (3.5 \times 10^{-7}) \sin{(1.5 \times 10^3 x + 0.5 \times 10^{11} t)}T$. The corresponding electric field will be

(1)
$$E_y = 1.17 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t) Vm^{-1}$$

(2)
$$E_z = 105 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t) Vm^{-1}$$

(3)
$$E_z = 1.17 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t) Vm^{-1}$$

(4)
$$E_v = 10.5 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t) Vm^{-1}$$

36. A square loop of side 15 cm being moved towards right at a constant speed of 2 cm/s as shown in figure. The front edge enters the 50 cm wide magnetic field at t = 0. The value of induced emf in the loop at t = 10 s will be:

- $(1) 0.3 \ mV$
- (2) $4.5 \, mV$
- (3) zero
- (4) $3 \, mV$
- 37. Two cars are travelling towards each other at speed of 20 m s⁻¹ each. When the cars are 300 m apart, both the drivers apply brakes and the cars retard at the rate of 2 m s⁻². The distance between them when they come to rest is :
 - (1) 200 m
- (2) 50 m
- (3) 100 m
- (4) 25 m

38. The I-V characteristics of an electronic device shown in the figure. The device is:

- (1) a solar cell
- (2) a transistor which can be used as an amplifier
- (3) a zener diode which can be used as voltage regulator
- (4) a diode which can be used as a rectifier
- 39. The excess pressure inside a soap bubble is thrice the excess pressure inside a second soap bubble. The ratio between the volume of the first and the second bubble is:
 - (1) 1:9
- (2) 1:3
- (3) 1:81
- (4) 1:27
- 40. The de-Broglie wavelength associated with a particle of mass m and energy E is $h / \sqrt{2mE}$. The dimensional formula for Planck's constant is:
 - (1) $[ML^{-1}T^{-2}]$
- (2) $[ML^2T^{-1}]$
- (3) $[MLT^{-2}]$
- (4) $[M^2L^2T^{-2}]$
- 41. A satellite of 10^3 kg mass is revolving in circular orbit of radius 2R. If $\frac{10^4 \text{R}}{6}J$ energy is supplied to the satellite, it would revolve in a new circular orbit of radius:

(use $g = 10 \text{m/s}^2$, R = radius of earth)

- (1) 2.5 R
- (2) 3 R
- (3) 4 R
- (4) 6 R

42. The effective resistance between A and B, if resistance of each resistor is R, will be

- $(1) \frac{2}{3} R$
- $(2) \frac{8R}{3}$
- (3) $\frac{5R}{3}$
- (4) $\frac{4R}{3}$
- **43.** Five charges +q, +5q, -2q, +3q and -4q are situated as shown in the figure. The electric flux due to this configuration through the surface S is:

- $(1) \frac{5q}{\epsilon_0}$
- $(2) \frac{4q}{\epsilon_0}$
- $(3) \ \frac{3q}{\epsilon_0}$
- $(4) \frac{q}{\epsilon_0}$
- 44. A proton and a deutron (q= +e, m = 2.0u) having same kinetic energies enter a region of uniform magnetic field \vec{B} , moving perpendicular to \vec{B} . The ratio of the radius r_d of deutron path to the radius r_p of the proton path is:
 - (1) 1:1
- (2) $1:\sqrt{2}$
- $(3)\sqrt{2}:1$
- (4) 1:2

- 45. UV light of 4.13 eV is incident on a photosensitive metal surface having work function 3.13 eV. The maximum kinetic energy of ejected photoelectrons will be:
 - (1) 4.13 eV
- (2) 1 eV
- (3) 3.13 eV
- (4) 7.26 eV
- 46. The energy released in the fusion of 2 kg of hydrogen deep in the sun is E_H and the energy released in the fission of 2 kg of ^{235}U is E_U . The ratio $\frac{E_H}{E_U}$ is approximately:

(Consider the fusion reaction as $4_1^1 \, H + 2 e^- \rightarrow_2^4 \, He + 2 v + 6 \gamma + 26.7 \, MeV$, energy released in the fission reaction of $^{235} U$ is 200 MeV per fission nucleus and $N_A = 6.023 \times 10^{23}$)

- (1) 9.13
- (2) 15.04
- (3) 7.62
- (4) 25.6
- 47. A real gas within a closed chamber at 27° C undergoes the cyclic process as shown in figure. The gas obeys $PV^{3} = RT$ equation for the path A to B. The net work done in the complete cycle is (assuming R = 8J/molK):

- (1) 225 J
- (2) 205 J
- (3) 20 J
- (4) 20 J

48. A 1 kg mass is suspended from the ceiling by a rope of length 4m. A horizontal force 'F' is applied at the mid point of the rope so that the rope makes an angle of 45° with respect to the vertical axis as shown in figure. The magnitude of F is:

- (1) $\frac{10}{\sqrt{2}}$ N
- (2) 1 N
- $(3) \ \frac{1}{10 \times \sqrt{2}} N$
- (4) 10 N
- **49.** A spherical ball of radius 1×10^{-4} m and density 10^5 kg/m³ falls freely under gravity through a distance h before entering a tank of water, If after entering in water the velocity of the ball does not change, then the value of h is approximately:

(The coefficient of viscosity of water is 9.8×10^{-6} N s/m²)

- (1) 2296 m
- (2) 2249 m
- (3) 2518 m
- (4) 2396 m
- 50. A B 0 0 0 1 1 0 1 1 1 0

In the truth table of the above circuit the value of X and Y are :

- (1) 1, 1
- (2) 1, 0
- (3)0,1
- (4) 0, 0

SECTION-B

- 51. A straight magnetic strip has a magnetic moment of 44 Am². If the strip is bent in a semicircular shape, its magnetic moment will be Am².

 (Given $\pi = \frac{22}{7}$)
- 53. A capacitor of reactance $4\sqrt{3}\Omega$ and a resistor of resistance 4Ω are connected in series with an ac source of peak value $8\sqrt{2}V$. The power dissipation in the circuit isW.

56. To determine the resistance (R) of a wire, a circuit is designed below, The V-I characteristic curve for this circuit is plotted for the voltmeter and the ammeter readings as shown in figure. The value of R isΩ.

- 57. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to \vec{A} and its magnitude is half that of \vec{B} . The angle between vectors \vec{A} and \vec{B} is
- 58. Monochromatic light of wavelength 500 nm is used in Young's double slit experiment. An interference pattern is obtained on a screen When one of the slits is covered with a very thin glass plate (refractive index = 1.5), the central maximum is shifted to a position previously occupied by the 4th bright fringe. The thickness of the glass-plate isμm.
- 59. A force $(3x^2 + 2x 5)$ N displaces a body from x = 2 m to x = 4m. Work done by this force isJ.
- 60. At room temperature (27°C), the resistance of a heating element is 50Ω . The temperature coefficient of the material is 2.4×10^{-4} °C⁻¹. The temperature of the element, when its resistance is 62Ω , is°C.