1. A temperature difference can generate e.m.f. in some materials. Let S be the e.m.f. produced per unit temperature difference between the ends of a wire,  $\sigma$  the electrical conductivity and k the thermal conductivity of the material of the wire. Taking M, L, T, I and k as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity  $Z = (S^2\sigma) / k$  is:

- (A)  $[M^0L^0T^0I^0K^0]$
- (B)  $[M^0L^0T^0I^0K^{-1}]$
- (C)  $[M^1L^2T^{-2}I^{-1}K^{-1}]$
- (D)  $[M^1L^2T^{-4}I^{-1}K^{-1}]$

1. A temperature difference can generate e.m.f. in some materials. Let S be the e.m.f. produced per unit temperature difference between the ends of a wire,  $\sigma$  the electrical conductivity and K the thermal conductivity of the material of the wire. Taking K, K, K, K and K as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity K = (K<sup>2</sup> $\sigma$ ) / K is:

```
(A) [M^0L^0T^0I^0K^0]

(B) [M^0L^0T^0I^0K^{-1}]

(C) [M^1L^2T^{-2}I^{-1}K^{-1}]

(D) [M^1L^2T^{-4}I^{-1}K^{-1}]
```

1. A temperature difference can generate e.m.f. in some materials. Let S be the e.m.f. produced per unit temperature difference between the ends of a wire,  $\sigma$  the electrical conductivity and K the thermal conductivity of the material of the wire. Taking K, K, K, K and K as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity K = (K K K ) K is:

(A) 
$$[M^{0}L^{0}T^{0}I^{0}K^{0}]$$
  
(B)  $[M^{0}L^{0}T^{0}I^{0}K^{-1}]$   
(C)  $[M^{1}L^{2}T^{-2}I^{-1}K^{-1}]$   
(D)  $[M^{1}L^{2}T^{-4}I^{-1}K^{-1}]$   
 $V = \frac{1}{2}$ 
 $V = \frac{1$ 

2. Two co-axial conducting cylinders of same length *I* with radii R  $\sqrt{2}$  and 2R are kept, as shown in Fig.

1. The charge on the inner cylinder is Q and the outer cylinder is grounded. The annular region between the cylinders is filled with a material of dielectric constant k = 5. Consider an imaginary plane of the same length l at a distance R from the common axis of the cylinders. This plane is parallel to the axis of the cylinders. The cross-sectional view of this arrangement is shown in Fig. 2. Ignoring edge effects, the flux of the electric field through the plane is ( $\epsilon_0$  is the permittivity of free space):

| (A) | Q              | (B) | Q              | (C) | Q              | (D) | Q               |
|-----|----------------|-----|----------------|-----|----------------|-----|-----------------|
|     | $30\epsilon_0$ |     | $15\epsilon_0$ |     | $60\epsilon_0$ |     | $120\epsilon_0$ |



2. Two co-axial conducting cylinders of same length *I* with radii R  $\sqrt{2}$  and 2R are kept, as shown in Fig.

1. The charge on the inner cylinder is Q and the outer cylinder is grounded. The annular region between the cylinders is filled with a material of dielectric constant k = 5. Consider an imaginary plane of the same length l at a distance R from the common axis of the cylinders. This plane is parallel to the axis of the cylinders. The cross-sectional view of this arrangement is shown in Fig. 2. Ignoring edge effects, the flux of the electric field through the plane is ( $\epsilon_0$  is the permittivity of free space):

| (A) | Q              | (B) | Q              | (C) | Q              | (D) | Q               |
|-----|----------------|-----|----------------|-----|----------------|-----|-----------------|
|     | $30\epsilon_0$ |     | $15\epsilon_0$ |     | $60\epsilon_0$ |     | $120\epsilon_0$ |



2. Two co-axial conducting cylinders of same length *I* with radii R  $\sqrt{2}$  and 2R are kept, as shown in Fig.

1. The charge on the inner cylinder is Q and the outer cylinder is grounded. The annular region between the cylinders is filled with a material of dielectric constant k = 5. Consider an imaginary plane of the same length l at a distance R from the common axis of the cylinders. This plane is parallel to the axis of the cylinders. The cross-sectional view of this arrangement is shown in Fig. 2. Ignoring edge effects, the flux of the electric field through the plane is ( $\epsilon_0$  is the permittivity of free space):

















(A) 2  
(B) 
$$\sqrt{2}$$
  
(C)  $\sqrt{(5/2)}$   
(D)  $\sqrt{(2/5)}$ 



| (A) | 3γ        | (B)         | 2γ                | (C) | 2γ               | (D) | 3γ        |
|-----|-----------|-------------|-------------------|-----|------------------|-----|-----------|
|     | $-{2m_2}$ | , 37 10 100 | $-\overline{m_2}$ |     | $-\frac{1}{m_1}$ |     | $-{2m_1}$ |

| (A) | 3γ        | (B) | 2γ       | (C) | 2γ       | (D) | 3γ        |
|-----|-----------|-----|----------|-----|----------|-----|-----------|
|     | $-{2m_2}$ |     | $-{m_2}$ |     | $-{m_1}$ |     | $-{2m_1}$ |

**BONUS, MARKS TO ALL** 

| (A) | 3γ        | (B)        | 2γ       | (C) | 2γ       | (D)   | 3γ          |
|-----|-----------|------------|----------|-----|----------|-------|-------------|
|     | $-{2m_2}$ | 727 W 1992 | $-{m_2}$ |     | $-{m_1}$ | , , , | $-{2m_{1}}$ |



$$m_1 >> m_2$$
 $m_1 < m_2 \neq$ 
 $\frac{dm}{dt} = r$ 
 $\frac{dm}{dt} = -r$ 

(A) 
$$-\frac{3\gamma}{2m_2}$$
 (B)  $-\frac{2\gamma}{m_2}$  (C)  $-\frac{2\gamma}{m_1}$  (D)  $-\frac{3\gamma}{2m_1}$ 

$$m_2^2 m_1 r = k$$
 ) taking log

2 en  $m_2 + ln m_1 + ln \sigma = k$ 

diffo with

2.  $\frac{1}{m_2} \frac{dm_2}{dt} + \frac{1}{m_1} \frac{dm_1}{dt} + \frac{1}{\sigma} \frac{d\sigma}{dt} = 0$ 
 $\frac{2}{m_2} \frac{(-r)}{dt} + \frac{1}{m_1} \frac{dr}{dt} + \frac{dr}{\sigma} \frac{dr}{dt} = 0$ 

$$\frac{1}{6} \frac{d^{2}}{dt} = \frac{2}{m_{2}} - \frac{8}{m_{1}}$$

$$\frac{1}{2} \frac{d^{2}}{dt} = \frac{28}{m_{2}}$$

$$\frac{1}{2} \frac{d^{2}}{dt} = \frac{28}{m_{2}}$$

$$\frac{1}{2} \frac{d^{2}}{dt} = \frac{28}{m_{2}}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$$
 (where  $\epsilon_0$  is the permittivity of free space),

- (A) Before the grounding, the electrostatic potential of the sphere is 450 V.
- (B) Charge flowing from the sphere to the ground because of grounding is  $5 \times 10^{-9}$  C.
- (C) After the grounding is removed, the charge on the sphere is  $-5 \times 10^{-9}$  C.
- (D) The final electrostatic potential of the sphere is 300 V.

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$$
 (where  $\epsilon_0$  is the permittivity of free space),

- (A) Before the grounding, the electrostatic potential of the sphere is 450 V.
- (B) Charge flowing from the sphere to the ground because of grounding is  $5 \times 10^{-9}$  C.
- (C) After the grounding is removed, the charge on the sphere is  $-5 \times 10^{-9}$  C.
- (D) The final electrostatic potential of the sphere is 300 V.

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$$
 (where  $\epsilon_0$  is the permittivity of free space),

- (A) Before the grounding, the electrostatic potential of the sphere is 450 V.
- (B) Charge flowing from the sphere to the ground because of grounding is  $5 \times 10^{-9}$  C.
- (C) After the grounding is removed, the charge on the sphere is  $-5 \times 10^{-9}$  C.
- (D) The final electrostatic potential of the sphere is 300 V.

meutord sphere 
$$\frac{1}{2}$$
? = 0

 $x = 20 \text{ cm}$ 
 $Q = 108 \text{ c}$ 
 $R = 10 \times 10^{2} \text{ m}$ 
 $x = 20 \text{ cm}$ 
 $Q = 108 \text{ c}$ 
 $R = 10 \times 10^{2} \text{ m}$ 
 $R = 10 \times 10^{2} \text{$ 

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$$
 (where  $\epsilon_0$  is the permittivity of free space),

- (A) Before the grounding, the electrostatic potential of the sphere is 450 V.
- (B) Charge flowing from the sphere to the ground because of grounding is  $5 \times 10^{-9}$  C.
- (C) After the grounding is removed, the charge on the sphere is  $-5 \times 10^{-9}$  C.
- (D) The final electrostatic potential of the sphere is 300 V.

$$q' = -\frac{R}{8}q = -\frac{10 \times 16^{2}}{20 \times 16^{2}} \times 16^{8} = -\frac{10}{2} \times 10^{9} = -5 \times 10^{9}$$

The whole sphere  $\frac{1}{2}$   $\frac{1}$ 

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$$
 (where  $\epsilon_0$  is the permittivity of free space),

- (A) Before the grounding, the electrostatic potential of the sphere is 450 V.
- (B) Charge flowing from the sphere to the ground because of grounding is  $5 \times 10^{-9}$  C.
- (C) After the grounding is removed, the charge on the sphere is  $-5 \times 10^{-9}$  C.
- (D) The final electrostatic potential of the sphere is 300 V.

$$q' = -\frac{R}{8}q = -\frac{10 \times 15^{2}}{20 \times 15^{2}} \times 15^{8} = -\frac{10}{2} \times 15^{9} = -5 \times 10^{9} \text{ c}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$$
 (where  $\epsilon_0$  is the permittivity of free space),

- (A) Before the grounding, the electrostatic potential of the sphere is 450 V.
- (B) Charge flowing from the sphere to the ground because of grounding is  $5 \times 10^{-9}$  C.
- (C) After the grounding is removed, the charge on the sphere is  $-5 \times 10^{-9}$  C.
- (D) The final electrostatic potential of the sphere is 300 V.

6. Two identical concave mirrors each of focal length f are facing each other as shown in the schematic diagram. The focal length f is much larger than the size of the mirrors. A glass slab of thickness t and refractive index n<sub>0</sub> is kept equidistant from the mirrors and perpendicular to their common principal axis. A monochromatic point light source S is embedded at the center of the slab on the principal axis, as shown in the schematic diagram. For the image to be formed on S itself, which of the following distances between the two mirrors is/are correct?



| (A) | $4f + \left(1 - \frac{1}{n_0}\right)t$ | (B) | $2f + \left(1 - \frac{1}{n_0}\right)t$ |
|-----|----------------------------------------|-----|----------------------------------------|
| (C) | $4f + (n_0 - 1)t$                      | (D) | $2f + (n_0 - 1)t$                      |

6. Two identical concave mirrors each of focal length f are facing each other as shown in the schematic diagram. The focal length f is much larger than the size of the mirrors. A glass slab of thickness t and refractive index n<sub>0</sub> is kept equidistant from the mirrors and perpendicular to their common principal axis. A monochromatic point light source S is embedded at the center of the slab on the principal axis, as shown in the schematic diagram. For the image to be formed on S itself, which of the following distances between the two mirrors is/are correct?



(A) 
$$4f + \left(1 - \frac{1}{n_0}\right)t$$
 (B)  $2f + \left(1 - \frac{1}{n_0}\right)t$  (C)  $4f + (n_0 - 1)t$  (D)  $2f + (n_0 - 1)t$ 









(A) 
$$4f + \left(1 - \frac{1}{n_0}\right)t$$
 (B)  $2f + \left(1 - \frac{1}{n_0}\right)t$  (C)  $4f + (n_0 - 1)t$  (D)  $2f + (n_0 - 1)t$ 







## CASE-2

(A) 
$$4f + \left(1 - \frac{1}{n_0}\right)t$$
 (B)  $2f + \left(1 - \frac{1}{n_0}\right)t$  (C)  $4f + (n_0 - 1)t$  (D)  $2f + (n_0 - 1)t$ 

7. Six infinitely large and thin non-conducting sheets are fixed in configurations I and II. As shown in the figure, the sheets carry uniform surface charge densities which are indicated in terms of  $\sigma_0$ . The separation between any two consecutive sheets is 1 µm. The various regions between the sheets are denoted as 1, 2, 3, 4 and 5. If  $\sigma_0$  = 9 µ C/m², then which of the following statements is/are correct? (Take permittivity of free space  $\varepsilon_0$  = 9 × 10<sup>-12</sup> F/m)



- (A) In region 4 of the configuration I, the magnitude of the electric field is zero.
- (B) In region 3 of the configuration II, the magnitude of the electric field is  $\sigma_0$  /  $\varepsilon_0$  .
- (C) Potential difference between the first and the last sheets of the configuration I is 5 V.
- (D) Potential difference between the first and the last sheets of the configuration II is zero.

7. Six infinitely large and thin non-conducting sheets are fixed in configurations I and II. As shown in the figure, the sheets carry uniform surface charge densities which are indicated in terms of  $\sigma_0$ . The separation between any two consecutive sheets is 1 µm. The various regions between the sheets are denoted as 1, 2, 3, 4 and 5. If  $\sigma_0 = 9 \mu$  C/m<sup>2</sup>, then which of the following statements is/are correct? (Take permittivity of free space  $\epsilon_0 = 9 \times 10^{-12}$  F/m)





- (A) In region 4 of the configuration I, the magnitude of the electric field is zero.
- (B) In region 3 of the configuration II, the magnitude of the electric field is  $\sigma_0 / \epsilon_0$ .
- (C) Potential difference between the first and the last sheets of the configuration I is 5 V.
- (D) Potential difference between the first and the last sheets of the configuration II is zero.

7. Six infinitely large and thin non-conducting sheets are fixed in configurations I and II. As shown in the figure, the sheets carry uniform surface charge densities which are indicated in terms of  $\sigma_0$ . The separation between any two consecutive sheets is 1 µm. The various regions between the sheets are denoted as 1, 2, 3, 4 and 5. If  $\sigma_0$  = 9 µ C/m², then which of the following statements is/are correct? (Take permittivity of free space  $\varepsilon_0$  = 9 × 10<sup>-12</sup> F/m)





(A) In region 4 of the configuration I, the magnitude of the electric field is zero.



7. Six infinitely large and thin non-conducting sheets are fixed in configurations I and II. As shown in the figure, the sheets carry uniform surface charge densities which are indicated in terms of  $\sigma_0$ . The separation between any two consecutive sheets is 1 µm. The various regions between the sheets are denoted as 1, 2, 3, 4 and 5. If  $\sigma_0$  = 9 µ C/m², then which of the following statements is/are correct? (Take permittivity of free space  $\varepsilon_0$  = 9 × 10<sup>-12</sup> F/m)





(B) In region 3 of the configuration II, the magnitude of the electric field is  $\sigma_0 / \epsilon_0$ .

7. Six infinitely large and thin non-conducting sheets are fixed in configurations I and II. As shown in the figure, the sheets carry uniform surface charge densities which are indicated in terms of  $\sigma_0$ . The separation between any two consecutive sheets is 1  $\mu$ m. The various regions between the sheets are denoted as 1, 2, 3, 4 and 5. If  $\sigma_0$  = 9  $\mu$  C/m², then which of the following statements is/are correct? (Take permittivity of free space  $\varepsilon_0$  = 9 × 10<sup>-12</sup> F/m)



(C) Potential difference between the first and the last sheets of the configuration I is 5 V.

7. Six infinitely large and thin non-conducting sheets are fixed in configurations I and II. As shown in the figure, the sheets carry uniform surface charge densities which are indicated in terms of  $\sigma_0$ . The separation between any two consecutive sheets is 1 µm. The various regions between the sheets are denoted as 1, 2, 3, 4 and 5. If  $\sigma_0$  = 9 µ C/m², then which of the following statements is/are correct? (Take permittivity of free space  $\varepsilon_0$  = 9 × 10<sup>-12</sup> F/m)



(D) Potential difference between the first and the last sheets of the configuration II is zero.

$$E_{1} = 2 \frac{\sigma_{0}}{2^{1/2}} = \frac{\sigma_{0}}{2^{1/$$

- 8. The efficiency of a Carnot engine operating with a hot reservoir kept at a temperature of 1000 K is 0.4. It extracts 150 J of heat per cycle from the hot reservoir. The work extracted from this engine is being fully used to run a heat pump which has a coefficient of performance 10. The hot reservoir of the heat pump is at a temperature of 300 K. Which of the following statements is/are correct:
- (A) Work extracted from the Carnot engine in one cycle is 60 J.
- (B) Temperature of the cold reservoir of the Carnot engine is 600 K.
- (C) Temperature of the cold reservoir of the heat pump is 270 K.
- (D) Heat supplied to the hot reservoir of the heat pump in one cycle is 540 J.

- 8. The efficiency of a Carnot engine operating with a hot reservoir kept at a temperature of 1000 K is 0.4. It extracts 150 J of heat per cycle from the hot reservoir. The work extracted from this engine is being fully used to run a heat pump which has a coefficient of performance 10. The hot reservoir of the heat pump is at a temperature of 300 K. Which of the following statements is/are correct:
- (A) Work extracted from the Carnot engine in one cycle is 60 J.
- (B) Temperature of the cold reservoir of the Carnot engine is 600 K.
- (C) Temperature of the cold reservoir of the heat pump is 270 K.
- (D) Heat supplied to the hot reservoir of the heat pump in one cycle is 540 J.

- 8. The efficiency of a Carnot engine operating with a hot reservoir kept at a temperature of 1000 K is 0.4. It extracts 150 J of heat per cycle from the hot reservoir. The work extracted from this engine is being fully used to run a heat pump which has a coefficient of performance 10. The hot reservoir of the heat pump is at a temperature of 300 K. Which of the following statements is/are correct:
- (A) Work extracted from the Carnot engine in one cycle is 60 J.
- (B) Temperature of the cold reservoir of the Carnot engine is 600 K.
- (C) Temperature of the cold reservoir of the heat pump is 270 K.
- (D) Heat supplied to the hot reservoir of the heat pump in one cycle is 540 J.



- 8. The efficiency of a Carnot engine operating with a hot reservoir kept at a temperature of 1000 K is 0.4. It extracts 150 J of heat per cycle from the hot reservoir. The work extracted from this engine is being fully used to run a heat pump which has a coefficient of performance 10. The hot reservoir of the heat pump is at a temperature of 300 K. Which of the following statements is/are correct:
- (A) Work extracted from the Carnot engine in one cycle is 60 J.
- (B) Temperature of the cold reservoir of the Carnot engine is 600 K.
- (C) Temperature of the cold reservoir of the heat pump is 270 K.
- (D) Heat supplied to the hot reservoir of the heat pump in one cycle is 540 J.



9. A conducting solid sphere of radius R and mass M carries a charge Q. The sphere is rotating about an axis passing through its center with a uniform angular speed  $\omega$ . The ratio of the magnitudes of the magnetic dipole moment to the angular momentum about the same axis is given as ( $\alpha$ Q) / (2M), The value of  $\alpha$  is \_\_\_\_\_

9. A conducting solid sphere of radius R and mass M carries a charge Q. The sphere is rotating about an axis passing through its center with a uniform angular speed  $\omega$ . The ratio of the magnitudes of the magnetic dipole moment to the angular momentum about the same axis is given as ( $\alpha$ Q) / (2M), The value of  $\alpha$  is \_\_\_\_\_

**ANSWER: (1.65 to 1.67)** 

9. A conducting solid sphere of radius R and mass M carries a charge Q. The sphere is rotating about an axis passing through its center with a uniform angular speed  $\omega$ . The ratio of the magnitudes of the magnetic dipole moment to the angular momentum about the same axis is given as ( $\alpha$ Q) / (2M), The value of  $\alpha$  is



$$\frac{N}{L} = \frac{20}{2m}$$

$$\frac{1}{2m} = \frac{20}{2m}$$

$$\frac{1}{2m} = \frac{20}{2m}$$

$$\frac{N}{L} = \frac{20}{2m}$$

$$\frac{N}{L} = \frac{20}{2m}$$

$$\frac{N}{2m} = \frac{20}{2m}$$

$$\frac{20}{2m} = \frac{20}{2m}$$

\_\_\_\_

**ANSWER: (11.7 to 11.9)** 



$$E_1 = E_{ianisahan} + kE_{e}$$
 $E_1 = 13.6 + 10$ 
 $E_1 = 23.6 eV$ 

$$V_{1}, E_{1}$$
 $V_{2}, E_{1}$ 
 $V_{2}, E_{2}$ 
 $V_{2}, E_{2}$ 

11. An ideal monatomic gas of n moles is taken through a cycle WXYZW consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic V-T diagram. The volume of the gas at W, X and Y points are, 64 cm<sup>3</sup>, 125 cm<sup>3</sup> and 250 cm<sup>3</sup> respectively. If the absolute temperature of the gas  $T_W$  at the point W is such that  $nRT_W = 1$  J (R is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path XY is

11. An ideal monatomic gas of n moles is taken through a cycle WXYZW consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic V-T diagram. The volume of the gas at W, X and Y points are, 64 cm<sup>3</sup>, 125 cm<sup>3</sup> and 250 cm<sup>3</sup> respectively. If the absolute temperature of the gas  $T_W$  at the point W is such that  $nRT_W = 1$  J (R is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path XY is

(1.6)



11. An ideal monatomic gas of n moles is taken through a cycle WXYZW consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic V-T diagram. The volume of the gas at W, X and Y points are, 64 cm<sup>3</sup>, 125 cm<sup>3</sup> and 250 cm<sup>3</sup> respectively. If the absolute temperature of the gas  $T_W$  at the point W is such that  $nRT_W = 1$  J (R is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path XY is





11. An ideal monatomic gas of n moles is taken through a cycle WXYZW consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic V-T diagram. The volume of the gas at W, X and Y points are, 64 cm $^3$ , 125 cm $^3$  and 250 cm $^3$  respectively. If the absolute temperature of the gas  $T_W$  at the point W is such that  $nRT_W = 1$  J (R is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path XY is \_\_\_\_

$$Q_{xy} = ncpdT$$
 $nRT_{w} = 1$ 
 $c_p = \frac{sR}{2}$ 
 $dT = \frac{16}{2}Tw$ 

$$0 = 0.5R. \frac{16}{2} = 0.5R. \frac{16}{2} = \frac{1648}{2 \times 28} = 1.6$$



12. A geostationary satellite above the equator is orbiting around the earth at a fixed distance  $r_1$  from the center of the earth. A second satellite is orbiting in the equatorial plane in the opposite direction to the earth's rotation, at a distance  $r_2$  from the center of the earth, such that  $r_1$  = 1.21  $r_2$ . The time period of the second satellite as measured from the geostationary satellite is 24 / p hours. The value of p is \_\_\_\_

12. A geostationary satellite above the equator is orbiting around the earth at a fixed distance  $r_1$  from the center of the earth. A second satellite is orbiting in the equatorial plane in the opposite direction to the earth's rotation, at a distance  $r_2$  from the center of the earth, such that  $r_1$  = 1.21  $r_2$ . The time period of the second satellite as measured from the geostationary satellite is 24 / p hours. The value of p is

(2.3 to 2.4)

12. A geostationary satellite above the equator is orbiting around the earth at a fixed distance  $r_1$  from the center of the earth. A second satellite is orbiting in the equatorial plane in the opposite direction to the earth's rotation, at a distance  $r_2$  from the center of the earth, such that  $r_1$  = 1.21  $r_2$ . The time period of the second satellite as measured from the geostationary satellite is 24 / p hours. The value of p is



13. The left and right compartments of a thermally isolated container of length L are separated by a thermally conducting, movable piston of area A. The left and right compartments are filled with 3/2 and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant k and natural length 2L/5. In thermodynamic equilibrium, the piston is at a distance L/2 from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is  $P = (KI \alpha)/A$ , then the value of  $\alpha$  is



13. The left and right compartments of a thermally isolated container of length L are separated by a thermally conducting, movable piston of area A. The left and right compartments are filled with 3/2 and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant k and natural length 2L/5. In thermodynamic equilibrium, the piston is at a distance L/2 from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is  $P = (KI \alpha)/A$ , then the value of  $\alpha$  is



(0.2)

13. The left and right compartments of a thermally isolated container of length L are separated by a thermally conducting, movable piston of area A. The left and right compartments are filled with 3/2and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant k and natural length 2L/5. In thermodynamic equilibrium, the piston is at a distance L/2 from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is  $P = (KI \alpha) / A$ , then the value of  $\alpha$  is



13. The left and right compartments of a thermally isolated container of length L are separated by a thermally conducting, movable piston of area A. The left and right compartments are filled with 3/2 and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant k and natural length 2L/5. In thermodynamic equilibrium, the piston is at a distance L/2 from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is  $P = (KI \alpha)/A$ , then the value of  $\alpha$  is \_\_\_\_\_



14. In a Young's double slit experiment, a combination of two glass wedges A and B, having refractive indices 1.7 and 1.5, respectively, are placed in front of the slits, as shown in the figure. The separation between the slits is d=2 mm and the shortest distance between the slits and the screen is D=2 m. Thickness of the combination of the wedges is t=12  $\mu$ m. The value of l as shown in the figure is 1 mm. Neglect any refraction effect at the slanted interface of the wedges. Due to the combination of the wedges, the central maximum shifts (in mm) with respect to O by \_\_\_\_\_



14. In a Young's double slit experiment, a combination of two glass wedges A and B, having refractive indices 1.7 and 1.5, respectively, are placed in front of the slits, as shown in the figure. The separation between the slits is d=2 mm and the shortest distance between the slits and the screen is D=2 m. Thickness of the combination of the wedges is t=12  $\mu$ m. The value of l as shown in the figure is 1 mm. Neglect any refraction effect at the slanted interface of the wedges. Due to the combination of the wedges, the central maximum shifts (in mm) with respect to O by \_\_\_\_\_



14. In a Young's double slit experiment, a combination of two glass wedges A and B, having refractive indices 1.7 and 1.5, respectively, are placed in front of the slits, as shown in the figure. The separation between the slits is d=2 mm and the shortest distance between the slits and the screen is D=2 m. Thickness of the combination of the wedges is t=12  $\mu$ m. The value of l as shown in the figure is 1 mm. Neglect any refraction effect at the slanted interface of the wedges. Due to the combination of the wedges, the central maximum shifts (in mm) with respect to O by \_\_\_\_



14. In a Young's double slit experiment, a combination of two glass wedges A and B, having refractive indices 1.7 and 1.5, respectively, are placed in front of the slits, as shown in the figure. The separation between the slits is d=2 mm and the shortest distance between the slits and the screen is D=2 m. Thickness of the combination of the wedges is t=12  $\mu$ m. The value of l as shown in the figure is 1 mm. Neglect any refraction effect at the slanted interface of the wedges. Due to the combination of the wedges, the central maximum shifts (in mm) with respect to O by \_\_\_\_



$$\mu_{A} \supset \mu_{B}$$
,  $d = 2mm$ ,  $D = 2m$ 

$$\Delta x = d \sin \theta = d \tan \theta = d \frac{d}{D}$$

$$\Delta x = 1.2 \mu m$$

$$d = 0. \Delta x = 2 \frac{1.2 \mu m}{2mm}$$

$$= 2 \times 1.2 \times 10^{-6} = 1.2 \times 10^{-3} \times 10^{3}$$

$$= 1.2 mm$$

[167 to 171]



$$m_{-} = \frac{200}{1500} = \frac{1}{5} \log_{10} , 0 = 60^{\circ}, u = 270 \text{ m/s}$$

$$c = 0.1, \quad x = 9 \qquad u_{x} = 270 \times \frac{1}{2} = 135$$

$$F_{x} = -cv_{x}$$

$$a_{x} = -\frac{c}{m}v_{x} = -\frac{1}{10} \times \frac{c}{10} \times \frac{c}{10} = -\frac{c}{10} \times \frac{c}{10}$$

$$\frac{du_{x}}{dt} = -\frac{u_{x}}{2}$$

$$\frac{du_{x}}{dt} = -\frac{u_{x}}{2}$$

$$\frac{du_{x}}{dt} = -\frac{u_{x}}{2}$$

$$\frac{dv_{x}}{dt} = -\frac{1}{2}(t)^{t}_{0}$$

$$m_{2} = \frac{200}{(500)} = \frac{1}{5} \log_{10} 0 = \frac{1}{600}, U = 270 \text{ m/s}$$

$$c = 0.1, \quad x = 9 \qquad u_{x} = 270 \times \frac{1}{2} = 135$$

$$z = \frac{1}{2} = 135 = \frac{-t/2}{2}$$

$$dx = 135 \int_{-t/2}^{2} e^{-t/2} dt$$

$$z = \frac{135}{-t/2} \left( \frac{e^{-t/2}}{e^{-t/2}} \right)_{0}^{2} = -270 \left( \frac{e^{-1}}{e^{-1}} - \frac{e^{-0}}{e^{-1}} \right)$$

$$z = -270 \left( \frac{1}{e^{-1}} - \frac{1}{e^{-1}} \right) = -\frac{270}{e^{-1}} + 270 = -\frac{270}{e^{-1}} + 270$$

$$= -100 + 270 = 170$$



[26 to 33]  $\begin{array}{c}
Y \\
g \\
X
\end{array}$ 





