JEE-MAIN EXAMINATION - APRIL 2025

(HELD ON MONDAY 07th APRIL 2025)

TIME: 3:00 PM TO 6:00 PM

PHYSICS

SECTION-A

26. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): The outer body of an air craft is made of metal which protects persons sitting inside from lightning-strikes.

Reason (R): The electric field inside the cavity enclosed by a conductor is zero.

In the light of the above statements, chose the **most** appropriate answer from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (2) (A) is correct but (R) is not correct
- (3) Both (A) and (R) are correct but (R) is not correct explanation of (A)
- (4) (A) is not correct but (R) is correct
- 27. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): The density of the copper $\binom{64}{29}$ Cu nucleus is greater than that of the carbon $\binom{12}{6}$ C nucleus.

Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

- (1) (A) is correct but (R) is not correct
- (2) (A) is not correct but (R) is correct
- (3) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (4) Both (A) and (R) are correct but (R) is not the correct explanation of (A)

28. The unit of $\sqrt{\frac{2I}{\epsilon_0}}$ is:

(I = intensity of an electromagnetic wave, c : speed of light)

- (1) Vm
- (2) NC
- (3) Nm
- (4) NC
- **29.** The dimension of $\sqrt{\frac{\mu_0}{\epsilon_0}}$ is equal to that of:

 $(\mu_0 = \text{Vacuum permeability and } \in_0 = \text{Vacuum permittivity})$

- (1) Voltage
- (2) Capacitance
- (3) Inductance
- (4) Resistance
- 30. A photo-emissive substance is illuminated with a radiation of wavelength λ_i so that it releases electrons with de-Broglie wavelength λ_e . The longest wavelength of radiation that can emit photoelectron is λ_0 . Expression for de-Broglie wavelength is given by :

(m : mass of the electron, h : Planck's constant and c : speed of light)

$$(1) \lambda_{e} = \sqrt{\frac{h}{2mc\left(\frac{1}{\lambda_{i}} - \frac{1}{\lambda_{0}}\right)}}$$

(2)
$$\lambda_e = \sqrt{\frac{h\lambda_0}{2mc}}$$

(3)
$$\lambda_e = \frac{h}{\sqrt{2mc\left(\frac{1}{\lambda_i} - \frac{1}{\lambda_0}\right)}}$$

(4)
$$\lambda_e = \sqrt{\frac{h\lambda_i}{2mc}}$$

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): The radius vector from the Sun to a planet sweeps out equal areas in equal intervals of time and thus areal velocity of planet is constant.

Reason (R): For a central force field the angular momentum is a constant.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

- (1) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (3) (A) is correct but (R) is not correct
- (4) (A) is not correct but (R) is correct
- 32. The helium and argon are put in the flask at the same room temperature (300 K). The ratio of average kinetic energies (per molecule) of helium and argon is:

(Give: Molar mass of helium = 4 g/mol, Molar mass of argon = 40 g/mol)

- (1) 1:10
- $(2)\ 10:1$
- (3) 1 : $\sqrt{10}$
- (4) 1:1
- 33. A capillary tube of radius 0.1 mm is partly dipped in water (surface tension 70 dyn/cm and glass water contact angle $\approx 0^{\circ}$) with 30° inclined with vertical. The length of water risen in the capillary is cm.

(Take $g = 9.8 \text{ m/s}^2$)

- (1) $\frac{82}{5}$
- (2) $\frac{57}{2}$
- (3) $\frac{71}{5}$
- $(4) \frac{68}{5}$

- 34. A mirror is used to produce an image with magnification of $\frac{1}{4}$. If the distance between object and its image is 40 cm, then the focal length of the mirror is
 - (1) 10 cm
- (2) 12.7 cm
- (3) 10.7 cm
- (4) 15 cm
- 35. A dipole with two electric charges of 2 μ C magnitude each, with separation distance 0.5 μ m, is placed between the plates of a capacitor such that its axis is parallel to an electric field established between the plates when a potential difference of 5 V is applied. Separation between the plates is 0.5 mm. If the dipole is rotated by 30° from the axis, it tends to realign in the direction due to a torque. The value of torque is :
 - (1) $5 \times 10^{-9} \text{ Nm}$
- (2) $5 \times 10^{-3} \text{ Nm}$
- (2) $2.5 \times 10^{-12} \,\mathrm{Nm}$
- (4) 2.5×10^{-9} Nm
- **36.** Consider the following logic circuit.

The output is Y = 0 when:

- (1) A = 1 and B = 1
- (2) A = 0 and B = 1
- (3) A = 1 and B = 0
- (4) A = 0 and B = 0
- 37. Match List-I with List-II.

List-I		List-II	
(A)	Mass density	(I)	$[\mathbf{ML}^2\mathbf{T}^{-3}]$
(B)	Impulse	(II)	[MLT ⁻¹]
(C)	Power	(III)	$[ML^2T^0]$
(D)	Moment of inertia	(IV)	$[\mathbf{ML}^{-3}\mathbf{T}^{0}]$

Choose the **correct** answer from the options given below:

- (1) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)
- (2) (A)-(I), (B)-(III), (C)-(IV), (D)-(II)
- (3) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)
- (4) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)

- 38. The equation of a wave travelling on a string is $y = \sin[20\pi x + 10\pi t]$, where x and t are distance and time in SI units. The minimum distance between two points having the same oscillating speed is:
 - (1) 5.0 cm
- (2) 20 cm
- (3) 10 cm
- (4) 2.5 cm
- 39. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R)

Assertion (A): Refractive index of glass is higher than that of air.

Reason (R): Optical density of a medium is directly proportionate to its mass density which results in a proportionate refractive index.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

- (1) (A) is not correct but (R) is correct
- (2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (3) (A) is correct but (R) is not correct
- (4) Both (A) and (R) are correct but (R) is **not** the correct explanation of (A)
- 40. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason(R).

Assertion (A): Magnetic monopoles do not exist.

Reason (R): Magnetic field lines are continuous and form closed loops.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

- (1) Both (A) and (R) are correct but (R) is **not** the correct explanation of (A)
- (2) (A) is correct but (R) is not correct
- (3) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (4) (A) is not correct but (R) is correct

- **41.** Which one of the following forces cannot be expressed in terms of potential energy?
 - (1) Coulomb's force
 - (2) Gravitational force
 - (3) Frictional force
 - (4) Restoring force
- 42. Match List-I with List-II.

	List-I	List-II		
(A)	Isothermal	(I)	ΔW (work done) = 0	
(B)	Adiabatic	(II)	ΔQ (supplied heat) = 0	
(C)	Isobaric	(III)	ΔU (change in internal energy) $\neq 0$	
(D)	Isochoric	(IV)	$\Delta U = 0$	

Choose the **correct** answer from the options given below :

- (1) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
- (2) (A)-(IV), (B)-(I), (C)-(III), (D)-(II)
- (3) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)
- (4) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)
- 43. A helicopter flying horizontally with a speed of 360 km/h at an altitude of 2 km, drops an object at an instant. The object hits the ground at a point O, 20 s after it is dropped. Displacement of 'O' from the position of helicopter where the object was released is:

(use acceleration due to gravity $g = 10 \text{ m/s}^2$ and neglect air resistance)

- (1) $2\sqrt{5} \text{ km}$
- (2) 4 km
- (3) 7.2 km
- (4) $2\sqrt{2} \text{ km}$
- 44. An object with mass 500 g moves along x-axis with speed $v=4\sqrt{x}$ m/s. The force acting on the object is :
 - (1) 8 N
- (2) 5 N
- (3) 6 N
- (4) 4 N

A transparent block A having refractive index 45. $\mu = 1.25$ is surrounded by another medium of refractive index $\mu = 1.0$ as shown in figure. A light ray is incident on the flat face of the block with incident angle θ as shown in figure. What is the maximum value of θ for which light suffers total internal reflection at the top surface of the block?

- $(3) \sin^{-1}(3/4)$
- $(2) \tan^{-1} (3/4)$
- $(4) \cos^{-1} (3/4)$

SECTION-B

- A parallel plate capacitor has charge 5 × 10⁻⁶ C. A 46. dielectric slab is inserted between the plates and almost fills the space between the plates. If the induced charge on one face of the slab is 4×10^{-6} C then the dielectric constant of the slab is ...
- An inductor of reactance 100 Ω , a capacitor of 47. reactance 50 Ω , and a resistor of resistance 50 Ω are connected in series with an AC source of 10 V, 50 Hz. Average power dissipated by the circuit is W.
- Two cylindrical rods A and B made of different 48. materials, are joined in a straight line. The ratio of lengths, radii and thermal conductivities of these rods are:

$$\frac{L_A}{L_B} = \frac{1}{2}, \frac{r_A}{r_B} = 2$$
 and $\frac{K_A}{K_B} = \frac{1}{2}$. The free ends of

rods A and B are maintained at 400 K, 200 K, respectively. The temperature of rods interface is K, when equilibrium is established.

- The electric field in a region is given by 49. $\vec{E} = (2\hat{i} + 4\hat{j} + 6\hat{k}) \times 10^3 \text{ N/C}$. The flux of the field through a rectangular surface parallel to x-z plane is 6.0 Nm²C⁻¹. The area of the surface is cm².
- 50. M and R be the mass and radius of a disc. A small disc of radius R/3 is removed from the bigger disc as shown in figure. The moment of inertia of remaining part of bigger disc about an axis AB passing through the centre O and perpendicular to the plane of disc is $\frac{4}{x}MR^2$. The value of x is

