1	Condition for a quantity to be vector (i)			
	(ii)			
	(iii)			
	Angular displacement is vect	tor or scalar		•
2	Define Tensor			
	Example			
3	Draw a diagram then write	(i) Cosine rule	(ii) Sine rule	
4	Triangle / parallelogram law formula)	of vector addition (Dra	aw diagram then write magnitude and di	rection
5	Resultant of addition of two	vector of equal magnit	itude a, which are inclined at angle θ ,	
	Magnitude:		direction:	

VECTORS 3

20 Rule to find direction of axial vector

21
$$\frac{d}{dt}$$
 $(\stackrel{\rightarrow}{A} \cdot \stackrel{\rightarrow}{B})$

$$\frac{d}{dt}$$
 $(\stackrel{\rightarrow}{A}X\stackrel{\rightarrow}{B}) =$

- 23 Work in vector form
- 24 Power in vector form
- 25 Electric flux in vector form
- 26 Magnetic flux in vector form
- 27 Potential energy of dipole in uniform electric field in vector form
- 28 Torque in vector form
- 29 Angular momentum in vector form
- 30 Relation between Linear velocity and angular velocity in vector form in circular motion

- 31 Torque on dipole in electric field in vector form
- 32 Define Null Vector or zero vector

Direction of Null Vector

If Vector \overrightarrow{A} in terms of rectangular component in 3 d $\overrightarrow{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$ then

Angle made with x axis

Angle made with y axis

Angle made with z axis

Direction cosine theorem:

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \Upsilon =$$

- 34 Condition for two vectors A and B to be parallel
- 35 Condition for two vectors A and B to be perpendicular
- 36 If A, B and C points are collinear, then $\overrightarrow{AB} = \cdots \xrightarrow{BC} \overrightarrow{BC}$

