NEET(UG)-2024 (EXAMINATION)

(Held On Sunday 5th MAY, 2024)

PHYSICS

Physics: Section-A (Q. No. 1 to 35)

- 1. A bob is whirled in a horizontal plane by means of a string with an initial speed of ω rpm. The tension in the string is T. If speed becomes 2ω while keeping the same radius, the tension in the string becomes :
 - (1) T
- (2) 4T
- (3) $\frac{T}{4}$
- (4) $\sqrt{2}T$
- 2. A particle moving with uniform speed in a circular path maintains:
 - (1) constant velocity
 - (2) constant acceleration.
 - (3) constant velocity but varying acceleration
 - (4) varying velocity and varying acceleration
- **3.** A logic circuit provides the output Y as per the following truth table :

Α	В	Y
0	0	1
0	1	0
1	0	1
1	1	0

The expression for the output Y is

- (1) $A.B + \overline{A}$
- (2) $A.\bar{B} + \bar{A}$

 $(3) \overline{B}$

(4) B

In the above diagrams, a strong bar magnet is moving towards solenoid-2 from solenoid-1. The direction of induced current in solenoid-1 and that in solenoid-2, respectively, are through the directions:

- (1) AB and DC
- (2) BA and CD
- (3) AB and CD
- (4) BA and DC

5. Given below are two statements: one is labelled as **Assertion** A and the other is labelled as **Reason.**

Assertion (A) :- The potential (V) at any axial point, at 2 m distance (r) from the centre of the dipole of dipole moment vector \vec{P} of magnitude, 4×10^{-6} C m, is $\pm 9 \times 10^{3}$ V.

(Take
$$\frac{1}{4\pi \in_{0}} = 9 \times 10^{9} \text{SI Units}$$
)

Reason (R) :- $V = \pm \frac{2P}{4\pi \in r^2}$, where r is the

distance of any axial point, situated at 2 m from the centre of the dipole.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true and R is NOT the correct explanation of A.
- (3) A is true but R is false.
- (4) A is false but R is true.
- 6. Match List-I with List-II

List-I	List-II
(Material)	(Susceptibility (χ))
A. Diamagnetic	I. $\chi = 0$
B. Ferromagnetic	II. $0 > \chi \ge -1$
C. Paramagnetic	III. χ >>1
D. Non-Magnetic	IV. $0 \le \chi < \epsilon$ (a small
	positive number)

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-IV, D-I
- (2) A-II, B-I, C-III, D-IV
- (3) A-III, B-II, C-I, D-IV
- (4) A-IV, B-III, C-II, D-I

7. In a uniform magnetic field of 0.049 T, a magnetic needle performs 20 complete oscillations in 5 seconds as shown. The moment of inertia of the needle is 9.8×10^{-6} kg m². If the magnitude of magnetic moment of the needle is $x \times 10^{-5}$ Am²; then the value of 'x' is:

- (1) $5 \pi^2$
- (2) $128 \pi^2$
- (3) 50 π^2
- (4) $1280 \pi^2$
- In a ideal transformer, the turns ratio $\frac{N_p}{N_s} = \frac{1}{2}$. The 8. ratio V_s : V_p is equal to (the symbols carry their usual meaning):
 - (1) 1 : 2
- (2) 2 : 1
- (3) 1 : 1
- (4) 1 : 4
- 9. In a vernier calipers, (N+1) divisions of vernier scale coincide with N divisions of main scale. If 1 MSD represents 0.1 mm, the vernier constant (in cm) is :
 - (1) $\frac{1}{10N}$
- (2) $\frac{1}{100(N+1)}$ (4) 10(N+1)
- (3) 100N
- 10. A horizontal force 10 N is applied to a block A as shown in figure. The mass of blocks A and B are 2 kg and 3 kg, respectively. The blocks slide over a frictionless surface. The force exerted by block A on block B is:

- (1) zero
- (2) 4 N
- (3) 6 N
- (4) 10 N

- 11. If $x = 5\sin\left(\pi t + \frac{\pi}{3}\right)$ m represents the motion of a particle executing simple harmonic motion, the amplitude and time period of motion respectively, are :
 - (1) 5 cm, 2 s
- (2) 5 m, 2 s
- (3) 5 cm, 1 s
- (4) 5 m, 1 s
- The terminal voltage of the battery, whose emf is 10V and internal resistance 1Ω , when connected through an external resistance of 4Ω as shown in the figure.

13. Given below are two statements:

> **Statement I**: Atoms are electrically neutral as they contain equal number of positive and negative charges.

> Statement II: Atoms of each element are stable and emit their characteristic spectrum.

> In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.

- **14.** If c is the velocity of light in free space, the correct statements about photon among the following are:
 - A. The energy of a photon is E = hv
 - B. The velocity of a photon is c.
 - C. The momentum of a photon, $p = \frac{hv}{c}$
 - D. In a photon-electron collision, both total energy and total momentum are conserved.
 - E. Photon possesses positive charge.

Choose the correct answer from the options given below:

- (1) A and B only
- (2) A, B, C and D only
- (3) A, C and D only
- (4) A, B, D and E only
- 15. Match List I with List II.

List I	List II
(Spectral Lines of	(Wavelengths (nm))
Hydrogen for	
transitions from)	

A. $n_2 = 3$ to $n_1 = 2$ I. 410.2 B. $n_2 = 4$ to $n_1 = 2$ II. 434.1 C. $n_2 = 5$ to $n_1 = 2$ III. 656.3 D. $n_2 = 6$ to $n_1 = 2$ IV. 486.1

Choose the correct answer from the options given below :

- (1) A-II, B-I, C-IV, D-III
- (2) A-III, B-IV, C-II, D-I
- (3) A-IV, B-III, C-I, D-II
- (4) A-I, B-II, C-III, D-IV
- **16.** A tightly wound 100 turns coil of radius 10 cm carries a current of 7 A. The magnitude of the magnetic field at the centre of the coil is (Take permeability of free space as $4\pi \times 10^{-7}$ SI units):
 - (1) 44 mT
- (2) 4.4 T
- (3) 4.4 mT
- (4) 44 T
- **17.** The output (Y) of the given logic gate is similar to the output of an/a:

- (1) NAND gate
- (2) NOR gate
- (3) OR gate
- (4) AND gate

- 18. A wire of length 'l' and resistance 100Ω is divided into 10 equal parts. The first 5 parts are connected in series while the next 5 parts are connected in parallel. The two combinations are again connected in series. The resistance of this final combination is:
 - $(1) 26\Omega$
- (2) 52Ω
- (3) 55Ω
- $(4) 60\Omega$

19.
$$^{290}_{82}X \xrightarrow{\alpha} Y \xrightarrow{e^+} Z \xrightarrow{\beta^-} P \xrightarrow{e^-} Q$$

In the nuclear emission stated above, the mass number and atomic number of the product Q respectively, are:

- (1) 280, 81
- (2) 286, 80
- (3) 288, 82
- (4) 286, 81
- **20.** The maximum elongation of a steel wire of 1m length if the elastic limit of steel and its Young's modulus, respectively, are 8×10^8 N m⁻² and 2×10^{11} N m⁻² is:
 - (1) 4 mm
- (2) 0.4 mm
- (3) 40 mm
- (4) 8 mm
- **21.** If the monochromatic source in Young's double slit experiment is replaced by white light, then
 - (1) interference pattern will disappear.
 - (2) there will be a central dark fringe surrounded by a few coloured fringes.
 - (3) there will be a central bright white fringe surrounded by a few coloured fringes.
 - (4) all bright fringes will be of equal width.
- 22. At any instant of time t, the displacement of any particle is given by 2t -1 (SI unit) under the influence of force of 5N. The value of instantaneous power is (in SI unit):
 - (1) 10
- (2)5

(3)7

(4) 6

23. Consider the following statements A and B and identify the correct answer:

- A. For a solar-cell, the I-V characteristics lies in the IV quadrant of the given graph.
- B. In a reverse biased pn junction diode, the current measured in (μA), is due to majority charge carriers.
- (1) A is correct but B is incorrect.
- (2) A is incorrect but B is correct.
- (3) Both A and B are correct.
- (4) Both A and B are incorrect.
- **24.** Two bodies A and B of same mass undergo completely inelastic one dimensional collision. The body A moves with velocity v_1 while body B is at rest before collision. The velocity of the system after collision is v_2 . The ratio $v_1:v_2$ is :
 - (1) 1 : 2
- (2) 2 : 1
- (3) 4:1
- (4) 1 : 4
- **25.** A light ray enters through a right angled prism at point P with the angle of incidence 30° as shown in figure. It travels through the prism parallel to its base BC and emerges along the face AC. The refractive index of the prism is:

- (1) $\frac{\sqrt{5}}{4}$
- (2) $\frac{\sqrt{5}}{2}$
- (3) $\frac{\sqrt{3}}{4}$
- (4) $\frac{\sqrt{3}}{2}$

26. The graph which shows the variation of $\left(\frac{1}{\lambda^2}\right)$ and

its kinetic energy, E is (where λ is de Broglie wavelength of a free particle) :

- **27.** The quantities which have the same dimensions as those of solid angle are :
 - (1) strain and angle
 - (2) stress and angle
 - (3) strain and arc
 - (4) angular speed and stress
- **28.** An unpolarised light beam strikes a glass surface at Brewster's angle Then
 - (1) the reflected light will be partially polarised.
 - (2) the refracted light will be completely polarised.
 - (3) both the reflected and refracted light will be completely polarised.
 - (4) the reflected light will be completely polarised but the refracted light will be partially polarised.
- **29.** The moment of inertia of a thin rod about an axis passing through its mid point and perpendicular to the rod is 2400 g cm². The length of the 400 g rod is nearly:
 - (1) 8.5 cm
- (2) 17.5 cm
- (3) 20.7 cm
- (4) 72.0 cm
- **30.** A thin flat circular disc of radius 4.5 cm is placed gently over the surface of water. If surface tension of water is 0.07 Nm⁻¹, then the excess force required to take it away from the surface is:
 - (1) 19.8 mN
- (2) 198 N
- (3) 1.98 mN
- (4) 99 N

31. A thermodynamic system is taken through the cycle abcda. The work done by the gas along the path bc

- (1) zero
- (2) 30 J
- (3) 90 J
- (4) 60 J
- **32.** A wheel of a bullock cart is rolling on a level road as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively)?

- Point P moves slower than point Q.
- (2) Point P moves faster than point Q.
- (3) Both the points P and Q move with equal speed.
- (4) Point P has zero speed.
- The mass of a planet is $\frac{1}{10}$ th that of the earth and its diameter is half that of the earth. acceleration due to gravity on that planet is:
 - (1) 19.6 m s⁻²
- (3) 4.9 m s⁻²
- (2) 9.8 m s⁻² (4) 3.92 m s⁻²
- In the following circuit, the equivalent capacitance between terminal A and terminal B is:

- (1) $2\mu F$
- (2) $1\mu F$
- $(3) 0.5 \mu F$
- $(4) 4 \mu F$

35. A thin spherical shell is charged by some source. The potential difference between the two points C and P (in V) shown in the figure is:

(Take
$$\frac{1}{4\pi \in_0} = 9 \times 10^9$$
 SI units)

- (1) 3×10^5
- (2) 1×10
- (3) 0.5×10^5
- (4) zero

Physics: Section-B (Q. No. 36 to 50)

36. The velocity (v) - time (t) plot of the motion of a body is shown below

The acceleration (a) - time (t) graph that best suits this motion is:

- **37**. If the mass of the bob in a simple pendulum is increased to thrice its original mass and its length is made half its original length, then the new time period of oscillation is $\frac{x}{2}$ times its original time period. Then the value of x is :
 - (1) √3
- (2) $\sqrt{2}$
- (3) $2\sqrt{3}$
- (4) 4

38. A 10 μF capacitor is connected to a 210 V, 50 Hz source as shown in figure. The peak current in the circuit is nearly $(\pi = 3.14)$:

- (1) 0.58 A
- (2) 0.93 A
- (3) 1.20 A
- (4) 0.35 A
- 39. The following graph represents the T-V curves of an ideal gas (where T is the temperature and V the volume) at three pressures P1, P2 and P3 compared with those of Charles's law represented as dotted lines.

Then the correct relation is

- (1) $P_3 > P_2 > P_1$
- (2) $P_1 > P_3 > P_2$
- (3) $P_2 > P_1 > P_3$
- $(4) P_1 > P_2 > P_3$
- **40.** An iron bar of length L has magnetic moment M. It is bent at the middle of its length such that the two arms make an angle 60° with each other. The magnetic moment of this new magnet is: °
 - (1) M
- (2) $\frac{M}{2}$ (3) 2M

- The minimum energy required to launch a satellite 41. of mass m from the surface of earth of mass M and radius R in a circular orbit at an altitude of 2R from the surface of the earth is:
 - (1) <u>5GmM</u>
- (3) $\frac{GmM}{2R}$
- (4) $\frac{GmM}{3R}$
- A parallel plate capacitor is charged by connecting it to a battery through a resistor. If I is the current in the circuit, then in the gap between the plates:
 - (1) there is no current.
 - (2) displacement current of magnitude equal to I flows in the same direction as I.
 - (3) displacement current of magnitude equal to I flows in a direction opposite to that of I.
 - (4) displacement current of magnitude greater than I flows but can be in any direction.
- 43. The property which is not of an electromagnetic wave travelling in free space is that :
 - they are transverse in nature.
 - (2) the energy density in electric field is equal to energy density in magnetic field.
 - (3) they travel with a speed equal to $\frac{1}{\sqrt{10}}$
 - (4) they originate from charges moving with uniform speed.
- A metallic bar of Young's modulus, 0.5×10^{11} N m⁻² 44. and coefficient of linear thermal expansion 10^{-5} °C⁻¹, length 1 m and area of cross-section 10⁻³ m² is heated from 0°C to 100°C without expansion or bending. The compressive force developed in it is:
 - (1) $5 \times 10^3 \text{ N}$
- (2) $50 \times 10^3 \text{ N}$
- (3) $100 \times 10^3 \text{ N}$
- $(4) 2 \times 10^3 \text{ N}$

45. Choose the correct circuit which can achieve the bridge balance.

- **46.** A sheet is placed on a horizontal surface in front of a strong magnetic pole. A force is needed to :
 - A. hold the sheet there if it is magnetic.
 - B. hold the sheet there if it is non-magnetic.
 - C. move the sheet away from the pole with uniform yelocity if it is conducting.
 - D. move the sheet away from the pole with uniform velocity if it is both, non-conducting and non-polar. Choose the correct statement(s) from the options given below:
 - (1) B and D only
- (2) A and C only
- (3) A, C and D only
- (4) C only

- 47. If the plates of a parallel plate capacitor connected to a battery are moved close to each other, then
 - A. the charge stored in it, increases.
 - B. the energy stored in it, decreases.
 - C. its capacitance increases.
 - D. the ratio of charge to its potential remains the same.
 - E. the product of charge and voltage increases.

Choose the most appropriate answer from the options given below:

- (1) A,B and E only
- (2) A,C and E only
- (3) B, D and E only
- (4) A, B and C only
- **48.** Two heaters A and B have power rating of 1 kW and 2 kW, respectively. Those two are first connected in series and then in parallel to a fixed power source. The ratio of power outputs for these two cases is :
 - (1) 1 : 1
- (2) 2 : 9
- (3) 1 : 2
- (4) 2 : 3
- 49. A small telescope has an objective of focal length 140 cm and an eye piece of focal length 5.0 cm. The magnifying power of telescope for viewing a distant object is:
 - (1) 34
- (2)28
- (3) 17

- (4) 32
- **50.** A force defined by $F = \alpha t^2 + \beta t$ acts on a particle at a given time t. The factor which is dimensionless, if α and β are constants, is :
 - (1) $\frac{\beta t}{\alpha}$

- (2) $\frac{\alpha t}{\beta}$
- (3) αβt
- $(4)\frac{\alpha\beta}{t}$