JEE-MAIN EXAMINATION - JANUARY 2025 # (HELD ON THURSDAY 23rd JANUARY 2025) ### TIME: 3:00 PM TO 6:00 PM ## **PHYSICS** #### SECTION-A - 26. A ball having kinetic energy KE, is projected at an angle of 60° from the horizontal. What will be the kinetic energy of ball at the highest point of its flight? - $(1) \frac{(KE)}{8}$ - (2) $\frac{(KE)}{4}$ - $(3)\frac{(KE)}{16}$ - $(4) \frac{(KE)}{2}$ - 27. Two charges 7 μc and -4 μc are placed at (-7 cm, 0, 0) and (7 cm, 0, 0) respectively. Given, $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$, the electrostatic potential energy of the charge configuration is : - (1) 1.5 J - (2) 2.0 J - (3) 1.2 J - (4) 1.8 J - 28. The refractive index of the material of a glass prism is $\sqrt{3}$. The angle of minimum deviation is equal to the angle of the prism. What is the angle of the prism? - (1) 50° - $(2) 60^{\circ}$ - $(3) 58^{\circ}$ - (4) 48° - 29. The equation of a transverse wave travelling along a string is $y(x, t) = 4.0 \sin [20 \times 10^{-3} x + 600t] \text{ mm}$, where x is in the mm and t is in second. The velocity of the wave is: - (1) + 30 m/s - (2) 60 m/s - (3) 30 m/s - (4) + 60 m/s - 30. The energy of a system is given as $E(t) = \alpha^3 e^{-\beta t}$, where t is the time and $\beta = 0.3 \text{ s}^{-1}$. The errors in the measurement of α and t are 1.2% and 1.6%, respectively. At t = 5 s, maximum percentage error in the energy is : - (1) 4% - (2) 11.6% - (3) 6% - (4) 8.4% 31. In photoelectric effect an em-wave is incident on a metal surface and electrons are ejected from the surface. If the work function of the metal is 2.14 eV and stopping potential is 2V, what is the wavelength of the em-wave? (Given hc = 1242 eVnm where h is the Planck's constant and c is the speed of light in vaccum.) - (1) 400 nm - (2) 600 nm - (3) 200 nm - (4) 300 nm - 32. A circular disk of radius R meter and mass M kg is rotating around the axis perpendicular to the disk. An external torque is applied to the disk such that $\theta(t) = 5t^2 8t$, where $\theta(t)$ is the angular position of the rotating disc as a function of time t. How much power is delivered by the applied torque, when t = 2s? - $(1) 60 MR^2$ - (2) 72 MR^2 - (3) 108 MR² - (4) $8 MR^2$ - 33. Water flows in a horizontal pipe whose one end is closed with a valve. The reading of the pressure gauge attached to the pipe is P₁. The reading of the pressure gauge falls to P₂ when the valve is opened. The speed of water flowing in the pipe is proportional to - (1) $\sqrt{P_1 P_2}$ - $(2) (P_1 P_2)^2$ - $(3) (P_1 P_2)^4$ - (4) $P_1 P_2$ - 34. Match List-I with List-II. List-I List-II (A) Permeability of free space (I) $[M L^2 T^{-2}]$ - (B) Magnetic field - (II) [M T⁻² A⁻¹] - (C) Magnetic moment - (III) $[MLT^{-2}A^{-2}]$ - (D) Torsional constant - (IV) $[L^2 A]$ Choose the correct answer from the options given below: - (1) (A)-(I), (B)-(IV), (C)-(II), (D)-(III) - (2) (A)-(II), (B)-(I), (C)-(III), (D)-(IV) - (3) (A)-(IV), (B)-(III), (C)-(I), (D)-(II) - (4) (A)-(III), (B)-(II), (C)-(IV), (D)-(I) - If a satellite orbiting the Earth is 9 times closer to 35. the Earth than the Moon, what is the time period of rotation of the satellite? Given rotational time period of Moon = 27 days and gravitational attraction between the satellite and the moon is neglected. - (1) 1 day - (2) 81 days - (3) 27 days - (4) 3 days - Two point charges $-4 \mu c$ and $4 \mu c$, constituting an 36. electric dipole, are placed at (-9, 0, 0) cm and (9, 0, 0) cm in a uniform electric field of strength 10⁴ NC⁻¹. The work done on the dipole in rotating it from the equilibrium through 180° is: - (1) 14.4 mJ - (2) 18.4 mJ - (3) 12.4 mJ - (4) 16.4 mJ - A galvanometer having a coil of resistance 30 Ω 37. need 20 mA of current for full-scale deflection. If a maximum current of 3 A is to be measured using this galvanometer, the resistance of the shunt to be added to the galvanometer should be $\frac{30}{\mathbf{v}}\Omega$, where X is - (1)447 - (2)298 - (3) 149 - (4)596 - The width of one of the two slits in Young's double 38. slit experiment is d while that of the other slit is xd. If the ratio of the maximum to the minimum intensity in the interference pattern on the screen is 9: 4 then what is the value of x? (Assume that the field strength varies according to the slit width.) (1) 2 (2)3 (3)5 (4)4 - 39. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R). - **Assertion (A):** The binding energy per nucleon is found to be practically independent of the atomic number A, for nuclei with mass numbers between 30 and 170. Reason (R): Nuclear force is long range. In the light of the above statements, choose the correct answer from the options given below: - (1) (A) is false but (R) is true - (2) (A) is true but (R) is false - (3) Both (A) and (R) are true and (R) is the correct explanation of (A) - (4) Both (A) and (R) are true but (R) is NOT the correct explanation of (A) - 40. Water of mass m gram is slowly heated to increase the temperature from T_1 to T_2 . The change in entropy of the water, given specific heat of water is 1 Jkg⁻¹K⁻¹, is: - (1) zero - (2) m (T_2-T_1) - (3) $m \ln \left(\frac{T_1}{T_2}\right)$ (4) $m \ln \left(\frac{T_2}{T_1}\right)$ - 41. What is the current through the battery in the circuit shown below? - (1) 1.0 A - (2) 1.5 A - (3) 0.5 A - (4) 0.25 A - A plane electromagnetic wave of frequency 42. 20 MHz travels in free space along the +x direction. At a particular point in space and time, the electric field vector of the wave is $E_v = 9.3 \text{ Vm}^{-1}$. Then, the magnetic field vector of the wave at that point is- - (1) $B_z = 9.3 \times 10^{-8} \text{ T}$ (2) $B_z = 1.55 \times 10^{-8} \text{ T}$ (3) $B_z = 6.2 \times 10^{-8} \text{ T}$ (4) $B_z = 3.1 \times 10^{-8} \text{ T}$ - 43. Using the given P-V diagram, the work done by an ideal gas along the path ABCD is- - (1) $4 P_0 V_0$ - (2) $3 P_0 V_0$ - $(3) 4 P_0 V_0$ - $(4) 3 P_0 V_0$ - A concave mirror of focal length f in air is dipped 44. in a liquid of refractive index μ . Its focal length in the liquid will be: - $(3) \mu f$ - 45. A massless spring gets elongated by amount x₁ under a tension of 5N. Its elongation is x_2 under the of 7N. For the elongation tension $(5x_1 - 2x_2)$, the tension in the spring will be, - (1) 15 N - (2) 20 N - (3) 11 N - (4) 39 N ### SECTION-B An air bubble of radius 1.0 mm is observed at a 46. depth of 20 cm below the free surface of a liquid having surface tension 0.095 J/m² and density 10³ kg/m³. The difference between pressure inside the bubble and atmospheric pressure N/m^2 . (Take $g = 10 \text{ m/s}^2$) - A satellite of mass $\frac{M}{2}$ is revolving around earth in 47. a circular orbit at a height of $\frac{R}{3}$ from earth surface. The angular momentum of the satellite is $M\sqrt{\frac{GMR}{x}}$. The value of x is _____, where M and R are the mass and radius of earth, respectively. (G is the gravitational constant) - At steady state the charge on the capacitor, as 48. shown in the circuit below, is - 49. A time varying potential difference is applied between the plates of a parallel plate capacitor of capacitance 2.5 µF. The dielectric constant of the medium between the capacitor plates is 1. It produces an instantaneous displacement current of 0.25 mA in the intervening space between the capacitor plates, the magnitude of the rate of change of the potential difference will be Vs^{-1} . - 50. In a series LCR circuit, a resistor of 300 Ω , a capacitor of 25 nF and an inductor of 100 mH are used. For maximum current in the circuit, the angular frequency of the ac source is $___ \times 10^4$ radians s⁻¹.