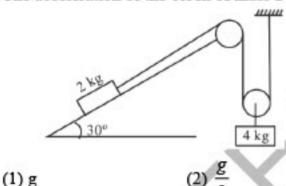
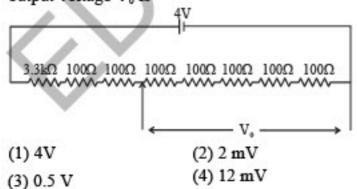
JEE-MAIN EXAMINATION - JANUARY, 2024

Tuesday 30th January, 2024)


PHYSICS

SECTION-A

31. Match List-I with List-II.


	List-I		List-II
A.	Coefficient of viscosity	I.	[M L ² T ⁻²]
B.	Surface Tension	II.	[M L ² T ⁻¹]
C.	Angular momentum	Ш.	[M L ⁻¹ T ⁻¹]
D.	Rotational kinetic energy	IV.	[M L ⁰ T ⁻²]

- (1) A-II, B-I, C-IV, D-III
- (2) A-I, B-II, C-III, D-IV
- (3) A-III, B-IV, C-II, D-I
- (4) A-IV, B-III, C-II, D-I
- 32. All surfaces shown in figure are assumed to be frictionless and the pulleys and the string are light. The acceleration of the block of mass 2 kg is:

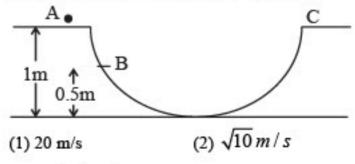
(3) $\frac{g}{2}$

- $(4) \frac{g}{4}$
- 33. A potential divider circuit is shown in figure. The output voltage V₀ is

34. Young's modules of material of a wire of length 'L' and cross-sectional area A is Y. If the length of the wire is doubled and cross-sectional area is halved then Young's modules will be:

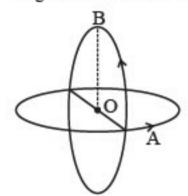
TIME: 9:00 AM to 12:00 NOON

- (1) $\frac{Y}{4}$
- (2) 4Y

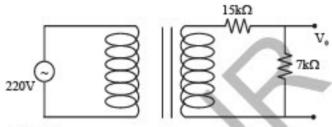

(3) Y

- (4) 2Y
- 35. The work function of a substance is 3.0 eV. The longest wavelength of light that can cause the emission of photoelectrons from this substance is approximately:
 - (1) 215 nm
- (2) 414 nm
- (3) 400 nm
- (4) 200 nm
- 36. The ratio of the magnitude of the kinetic energy to the potential energy of an electron in the 5th excited state of a hydrogen atom is:
 - (1) 4

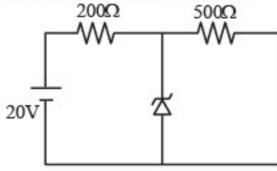
(2) $\frac{1}{4}$


(3) $\frac{1}{2}$

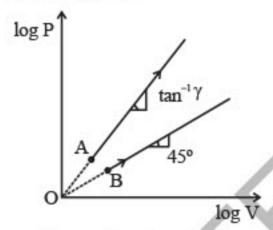
- (4) 1
- 37. A particle is placed at the point A of a frictionless track ABC as shown in figure. It is gently pushed toward right. The speed of the particle when it reaches the point B is: (Take g = 10 m/s²).


- (3) $2\sqrt{10}$ m/s
- (4) 10 m/s

- 38. The electric field of an electromagnetic wave in free space is represented as $\vec{E} = E_0 \cos(\omega t kz)\hat{i}$. The corresponding magnetic induction vector will be:
 - (1) $\vec{B} = E_0 C \cos(\omega t kz)\hat{j}$
 - (2) $\vec{B} = \frac{E_0}{C} \cos(\omega t kz)\hat{j}$
 - (3) $\vec{B} = E_0 C \cos(\omega t + kz)\hat{j}$
 - (4) $\vec{B} = \frac{E_0}{C} \cos(\omega t + kz)\hat{j}$
- 39. Two insulated circular loop A and B radius 'a' carrying a current of 'I' in the anti clockwise direction as shown in figure. The magnitude of the magnetic induction at the centre will be:


- $(1) \; \frac{\sqrt{2} \mu_0 I}{a}$
- $(2) \frac{\mu_0 I}{2a}$
- (3) $\frac{\mu_0 I}{\sqrt{2}a}$
- (4) $\frac{2\mu_0 I}{a}$
- 40. The diffraction pattern of a light of wavelength 400 nm diffracting from a slit of width 0.2 mm is focused on the focal plane of a convex lens of focal length 100 cm. The width of the 1st secondary maxima will be:
 - (1) 2 mm
 - (2) 2 cm
 - (3) 0.02 mm
 - (4) 0.2 mm

41. Primary coil of a transformer is connected to 220 V ac. Primary and secondary turns of the transforms are 100 and 10 respectively. Secondary coil of transformer is connected to two series resistance shown in shown in figure. The output voltage (V₀) is:



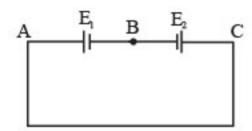
- (1) 7 V
- (2) 15 V
- (3) 44 V
- (4) 22 V
- 42. The gravitational potential at a point above the surface of earth is -5.12×10⁷ J/kg and the acceleration due to gravity at that point is 6.4 m/s². Assume that the mean radius of earth to be 6400 km. The height of this point above the earth's surface is:
 - (1) 1600 km
 - (2) 540 km
 - (3) 1200 km
 - (4) 1000 km
- 43. An electric toaster has resistance of 60 Ω at room temperature (27°C). The toaster is connected to a 220 V supply. If the current flowing through it reaches 2.75 A, the temperature attained by toaster is around: (if α = 2×10⁻⁴/°C)
 - 694°C
 - (2) 1235°C
 - (3) 1694°C
 - (4) 1667°C

44. A Zener diode of breakdown voltage 10V is used as a voltage regulator as shown in the figure. The current through the Zener diode is

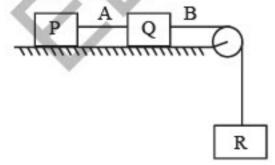
- (1) 50 mA
- (2)0
- (3) 30 mA
- (4) 20 mA
- 45. Two thermodynamical process are shown in the figure. The molar heat capacity for process A and B are C_A and C_B. The molar heat capacity at constant pressure and constant volume are represented by C_P and C_V, respectively. Choose the correct statement.

- (1) $C_B = \infty, C_A = 0$
- (2) $C_A = 0$ and $C_B = \infty$
- (3) $C_p > C_v > C_A = C_B$
- (4) $C_A > C_P > C_V$
- 46. The electrostatic potential due to an electric dipole at a distance 'r' varies as :
 - (1) r

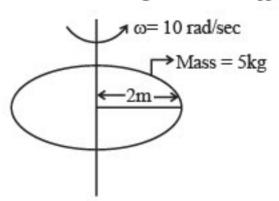
- (2) $\frac{1}{r^2}$
- (3) $\frac{1}{r^3}$
- (4) $\frac{1}{r}$


- 47. A spherical body of mass 100 g is dropped from a height of 10 m from the ground. After hitting the ground, the body rebounds to a height of 5m. The impulse of force imparted by the ground to the body is given by: (given g = 9.8 m/s²)
 - (1) 4.32 kg ms⁻¹
 - (2) 43.2 kg ms⁻¹
 - (3) 23.9 kg ms⁻¹
 - (4) 2.39 kg ms⁻¹
- 48. A particle of mass m projected with a velocity 'u' making an angle of 30° with the horizontal. The magnitude of angular momentum of the projectile about the point of projection when the particle is at its maximum height h is:
 - $(1) \ \frac{\sqrt{3}}{16} \frac{mu^2}{g}$
- $(2) \frac{\sqrt{3}}{2} \frac{mu^2}{g}$
- $(3) \frac{mu^3}{\sqrt{2}g}$
- (4) zero
- 49. At which temperature the r.m.s. velocity of a hydrogen molecule equal to that of an oxygen molecule at 47°C?
 - (1) 80 K
- (2) -73 K
- (3) 4 K
- (4) 20 K
- 50. A series L,R circuit connected with an ac source $E = (25 \sin 1000 \text{ t}) \text{ V has a power factor of } \frac{1}{\sqrt{2}} \text{ . If }$

the source of emf is changed to $E = (20 \sin 2000 t)V$, the new power factor of the circuit will be:


- (1) $\frac{1}{\sqrt{2}}$
- (2) $\frac{1}{\sqrt{3}}$
- (3) $\frac{1}{\sqrt{5}}$
- (4) $\frac{1}{\sqrt{7}}$

SECTION-B


- 51. The horizontal component of earth's magnetic field at a place is 3.5×10⁻⁵T. A very long straight conductor carrying current of √2A in the direction from South east to North West is placed. The force per unit length experienced by the conductor is×10⁻⁶ N/m.
- 52. Two cells are connected in opposition as shown.
 Cell E₁ is of 8 V emf and 2 Ω internal resistance;
 the cell E₂ is of 2 V emf and 4 Ω internal resistance. The terminal potential difference of cell E₂ is:

- 53. A electron of hydrogen atom on an excited state is having energy E_n = -0.85 eV. The maximum number of allowed transitions to lower energy level is
- 54. Each of three blocks P, Q and R shown in figure has a mass of 3 kg. Each of the wire A and B has cross-sectional area 0.005 cm² and Young's modulus 2 × 10¹¹ N m⁻². Neglecting friction, the longitudinal strain on wire B is ____ × 10⁻⁴. (Take g = 10 m/s²)

- 55. The distance between object and its two times magnified real image as produced by a convex lens is 45 cm. The focal length of the lens used is _____ cm.
- 56. The displacement and the increase in the velocity of a moving particle in the time interval of t to (t + 1) s are 125 m and 50 m/s, respectively. The distance travelled by the particle in (t + 2)th s is ___ m.
- 57. A capacitor of capacitance C and potential V has energy E. It is connected to another capacitor of capacitance 2 C and potential 2V. Then the loss of energy is $\frac{x}{3}E$, where x is _____.
- 58. Consider a Disc of mass 5 kg, radius 2m, rotating with angular velocity of 10 rad/s about an axis perpendicular to the plane of rotation. An identical disc is kept gently over the rotating disc along the same axis. The energy dissipated so that both the discs continue to rotate together without slipping is _____ J.

- 59. In a closed organ pipe, the frequency of fundamental note is 30 Hz. A certain amount of water is now poured in the organ pipe so that the fundamental frequency is increased to 110 Hz. If the organ pipe has a cross-sectional area of 2 cm², the amount of water poured in the organ tube is _____ g. (Take speed of sound in air is 330 m/s)
- 60. A ceiling fan having 3 blades of length 80 cm each is rotating with an angular velocity of 1200 rpm. The magnetic field of earth in that region is 0.5 G and angle of dip is 30°. The emf induced across the blades is Nπ×10⁻⁵V. The value of N is _____.