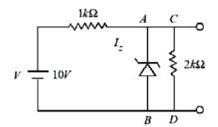
JEE-MAIN EXAMINATION - JANUARY, 2024


(Monday 29th January, 2024)

TIME: 9:00 AM to 12:00 NOON

PHYSICS

SECTION-A

31. In the given circuit, the breakdown voltage of the Zener diode is 3.0 V. What is the value of I₂?

- (1) 3.3 mA
- (2) 5.5 mA
- (3) 10 mA
- (4) 7 mA
- 32. The electric current through a wire varies with time as $I = I_0 + \beta t$. where $I_0 = 20$ A and $\beta = 3$ A/s. The amount of electric charge crossed through a section of the wire in 20 s is :
 - (1) 80 C
- (2) 1000 C
- (3) 800 C
- (4) 1600 C
- **33.** Given below are two statements:

Statement I: If a capillary tube is immersed first in cold water and then in hot water, the height of capillary rise will be smaller in hot water.

Statement II: If a capillary tube is immersed first in cold water and then in hot water, the height of capillary rise will be smaller in cold water.

In the light of the above statements, choose the *most appropriate* from the options given below

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is true but Statement II is false
- (4) Statement I is false but Statement II is true

- **34.** A convex mirror of radius of curvature 30 cm forms an image that is half the size of the object. The object distance is:
 - (1) 15 cm
- (2) 45 cm
- (3) 45 cm
- (4) 15 cm
- **35.** Two charges of 5Q and -2Q are situated at the points (3a, 0) and (-5a, 0) respectively. The electric flux through a sphere of radius '4a' having center at origin is:
 - $(1) \frac{2\zeta}{\varepsilon_0}$
- (2) $\frac{5Q}{\varepsilon_0}$
- (3) $\frac{7Q}{\varepsilon_0}$
- (4) $\frac{3Q}{\varepsilon_0}$
- 36. A body starts moving from rest with constant acceleration covers displacement S_1 in first (p-1) seconds and S_2 in first p seconds. The displacement $S_1 + S_2$ will be made in time:

$$(1)(2p+1)s$$

$$(2)\sqrt{(2p^2-2p+1)s}$$

$$(3)(2p-1)s$$

$$(4)(2p^2-2p+1)s$$

- 37. The potential energy function (in J) of a particle in a region of space is given as U = (2x² + 3y³ + 2z).
 Here x, y and z are in meter. The magnitude of x component of force (in N) acting on the particle at point P (1, 2, 3) m is:
 - (1) 2

(2) 6

- (3)4
- (4) 8

38. The resistance $R = \frac{V}{I}$ where $V = (200 \pm 5)V$ and

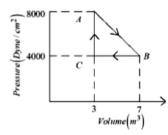
 $I = (20 \pm 0.2) A$, the percentage error in the measurement of R is :

- (1) 3.5%
- (2)7%
- (3) 3%
- (4) 5.5%
- 39. A block of mass 100 kg slides over a distance of 10 m on a horizontal surface. If the co-efficient of friction between the surfaces is 0.4, then the work done against friction (in J) is:
 - (1) 4200
 - (2)3900
 - (3)4000
 - (4) 4500
- 40. Match List I with List II

List I		List II	
A.	$\oint \overrightarrow{B}.\overrightarrow{dl} = \mu_0 i_c + \mu_0 \epsilon_0 \frac{d\phi_E}{dt}$	I.	Gauss'
	$\mathcal{P}^{\mathbf{D}.\mathbf{d}\mathbf{r}} = \mu_0 \mathbf{r}_c + \mu_0 \mathbf{c}_0 \mathbf{dt}$		law for
			electricity
B.	$\oint \vec{E}.\vec{dl} = \frac{d\phi_B}{dt}$	II.	Gauss'
	$\Psi^{E.di} = \frac{dt}{dt}$		law for
		X	magnetism
C.		III.	Faraday
	$\oint \vec{E} \cdot \vec{dA} = \frac{Q}{\varepsilon_0}$		law
D.	$\oint \overrightarrow{B}.\overrightarrow{dA} = 0$	IV.	Ampere –
	,		Maxwell
			law

Chose the correct answer from the options given below

- (1) A-IV, B-I, C-III, D-II
- (2) A-II, B-III, C-I, D-IV
- (3) A-IV, B-III, C-I, D-II
- (4) A-I, B-II, C-III, D-IV


- 41. If the radius of curvature of the path of two particles of same mass are in the ratio 3:4, then in order to have constant centripetal force, their velocities will be in the ratio of:
 - $(1)\sqrt{3}:2$
- $(2)1:\sqrt{3}$
- $(3)\sqrt{3}:1$
- $(4)2:\sqrt{3}$
- 42. A galvanometer having coil resistance 10Ω shows a full scale deflection for a current of 3mA. For it to measure a current of 8A, the value of the shunt should be:
 - $(1) 3 \times 10^{-3} \Omega$
 - $(2) 4.85 \times 10^{-3} \Omega$
 - $(3) 3.75 \times 10^{-3} \Omega$
 - (4) $2.75 \times 10^{-3} \Omega$
- 43. The de-Broglie wavelength of an electron is the same as that of a photon. If velocity of electron is 25% of the velocity of light, then the ratio of K.E. of electron and K.E. of photon will be:
 - (1) $\frac{1}{1}$

(2) $\frac{1}{8}$

(3) $\frac{8}{1}$

- (4) $\frac{1}{4}$
- 44. The deflection in moving coil galvanometer falls from 25 divisions to 5 division when a shunt of 24Ω is applied. The resistance of galvanometer coil will be:
 - (1) 12Ω
- $(2) 96\Omega$
- $(3)48\Omega$
- $(4) 100\Omega$

- 45. A biconvex lens of refractive index 1.5 has a focal length of 20 cm in air. Its focal length when immersed in a liquid of refractive index 1.6 will be:
 - (1) 16 cm
 - (2) 160 cm
 - (3) + 160 cm
 - (4) + 16 cm
- 46. A thermodynamic system is taken from an original state A to an intermediate state B by a linear process as shown in the figure. It's volume is then reduced to the original value from B to C by an isobaric process. The total work done by the gas from A to B and B to C would be:

- (1) 33800 J
- (2) 2200 J
- (3) 600 J
- (4) 1200 J
- 47. At what distance above and below the surface of the earth a body will have same weight, (take radius of earth as R.)
 - $(1) \sqrt{5}R R$
- $(2) \frac{\sqrt{3}R R}{2}$
- $(3) \frac{R}{2}$
- $(4) \ \frac{\sqrt{5}R R}{2}$
- 48. A capacitor of capacitance 100 μF is charged to a potential of 12 V and connected to a 6.4 mH inductor to produce oscillations. The maximum current in the circuit would be:
 - (1) 3.2 A
- (2) 1.5 A
- (3) 2.0 A
- (4) 1.2 A

49. The explosive in a Hydrogen bomb is a mixture of ${}_{1}H^{2}$, ${}_{1}H^{3}$ and ${}_{3}Li^{6}$ in some condensed form. The chain reaction is given by

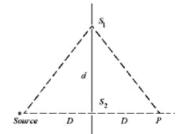
$$_{3}\text{Li}^{6} + _{0}\text{n}^{1} \rightarrow _{2}\text{He}^{4} + _{1}\text{H}^{3}$$

$$_{1}H^{2} + _{1}H^{3} \rightarrow _{2}He^{4} + _{0}n^{1}$$

During the explosion the energy released is approximately

[Given : M(Li) = 6.01690 amu. $M(_1H^2) = 2.01471$ amu. $M(_2He^4) = 4.00388$ amu, and 1 amu = 931.5 MeV]

- (1) 28.12 MeV
- (2) 12.64 MeV
- (3) 16.48 MeV
- (4) 22.22 MeV
- 50. Two vessels A and B are of the same size and are at same temperature. A contains 1g of hydrogen and B contains 1g of oxygen. P_A and P_B are the pressures of the gases in A and B respectively, then


$$\frac{P_A}{P_B}$$
 is:

- (1)16
- (2) 8
- (3) 4
- (4)32

SECTION-B

- **52.** A ball rolls off the top of a stairway with horizontal velocity u. The steps are 0.1 m high and 0.1 m wide. The minimum velocity u with which that ball just hits the step 5 of the stairway will be \sqrt{x} ms⁻¹ where x = [use g = 10 m/s²].
- 53. A square loop of side 10 cm and resistance 0.7Ω is placed vertically in east-west plane. A uniform magnetic field of 0.20 T is set up across the plane in north east direction. The magnetic field is decreased to zero in 1 s at a steady rate. Then, magnitude of induced emf is $\sqrt{x} \times 10^{-3}$ V. The value of x is _____.

- 54. A cylinder is rolling down on an inclined plane of inclination 60°. It's acceleration during rolling down will be $\frac{x}{\sqrt{3}} m/s^2$, where $x = \underline{\hspace{1cm}}$ (use $g = 10 \text{ m/s}^2$).
- 55. The magnetic potential due to a magnetic dipole at a point on its axis situated at a distance of 20 cm from its center is $1.5 \times 10^{-5} Tm$. The magnetic moment of the dipole is _____ Am². $(Given: \frac{\mu_0}{4\pi} = 10^{-7} Tm A^{-1})$
- 56. In a double slit experiment shown in figure, when light of wavelength 400 nm is used, dark fringe is observed at P. If D = 0.2 m. the minimum distance between the slits S_1 and S_2 is _____ mm.

- 57. A 16Ω wire is bend to form a square loop. A 9V battery with internal resistance 1Ω is connected across one of its sides. If a $4\mu F$ capacitor is connected across one of its diagonals, the energy stored by the capacitor will be $\frac{x}{2}\mu J$. where x=
- 58. When the displacement of a simple harmonic oscillator is one third of its amplitude, the ratio of total energy to the kinetic energy is $\frac{x}{8}$, where x =
- 59. An electron is moving under the influence of the electric field of a uniformly charged infinite plane sheet S having surface charge density $+\sigma$. The electron at t=0 is at a distance of 1 m from S and has a speed of 1 m/s. The maximum value of σ if the electron strikes S at t=1 s is $\alpha \left[\frac{m \in_0}{e}\right] \frac{C}{m^2}$ the value of α is
- 60. In a test experiment on a model aeroplane in wind tunnel, the flow speeds on the upper and lower surfaces of the wings are 70 ms⁻¹ and 65 ms⁻¹ respectively. If the wing area is 2 m² the lift of the wing is _____ N.

 (Given density of air = 1.2 kg m⁻³)